On considère le modèle du -TASEP, qui est une modification du processus d’exclusion totalement asymétrique (TASEP) sur . Le taux des sauts d’une particule dépend de la distance avec la particule à sa droite et d’un paramètre . Dans cet article on considère la condition initiale où est completement occupé par les particules. On montre que les fluctuations du courant au temps sont d’ordre et la distribution asymptotique est la distribution de Tracy–Widom GUE. Ce résultat confirme la conjecture KPZ.
We consider the -TASEP that is a -deformation of the totally asymmetric simple exclusion process (TASEP) on for where the jump rates depend on the gap to the next particle. For step initial condition, we prove that the current fluctuation of -TASEP at time is of order and asymptotically distributed as the GUE Tracy–Widom distribution, which confirms the KPZ scaling theory conjecture.
@article{AIHPB_2015__51_4_1465_0, author = {Ferrari, Patrik L. and Vet\H o, B\'alint}, title = {Tracy--Widom asymptotics for $q$-TASEP}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1465-1485}, doi = {10.1214/14-AIHP614}, mrnumber = {3414454}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_4_1465_0} }
Ferrari, Patrik L.; Vető, Bálint. Tracy–Widom asymptotics for $q$-TASEP. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1465-1485. doi : 10.1214/14-AIHP614. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_4_1465_0/
[1] A phase transition for -TASEP with a few slower particles. Stochastic Process. Appl. 125 (2015) 2674–2699. | MR 3332851
.[2] Discrete time -TASEPs. Int. Math. Res. Not. IMRN 2015 (2015) 499–537. | MR 3340328 | Zbl 06404857
and .[3] Macdonald processes. Probab. Theory Related Fields 158 (2014) 225–400. | MR 3152785 | Zbl 1291.82077
and .[4] Free energy fluctuations for directed polymers in random media in dimension. Comm. Pure Appl. Math. 67 (2014) 1129–1214. | MR 3207195 | Zbl 1295.82035
, and .[5] Spectral theory for the -Boson particle system. Compos. Math. 151 (2015) 1–67. | MR 3305308
, , and .[6] From duality to determinants for -TASEP and ASEP. Ann. Probab. 42 (2014) 2314–2382. | MR 3265169 | Zbl 1304.82048
, and .[7] Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13 (2008) 1380–1418. | MR 2438811 | Zbl 1187.82084
and .[8] Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055–1080. | MR 2363389 | Zbl 1136.82028
, , and .[9] Universality of slow decorrelation in KPZ models. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 134–150. | Numdam | MR 2919201 | Zbl 1247.82041
, and .[10] The -PushASEP: A new integrable model for traffic in dimension. J. Stat. Phys. 160 (2015) 1005–1026. | MR 3373649
and .[11] From interacting particle systems to random matrices. J. Stat. Mech. 2010 (2010) P10016. | MR 2800495
.[12] Dynamical properties of a tagged particle in the totally asymmetric simple exclusion process with the step-type initial condition. J. Stat. Phys. 128 (2007) 799–846. | MR 2344715 | Zbl 1136.82029
and .[13] Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003) 277–329. | MR 2018275 | Zbl 1031.60084
.[14] The transition probability and the probability for the left-most particle’s position of the -TAZRP. J. Math. Phys. 55 (2014) 013301. | MR 3390432 | Zbl 1291.82086
and .[15] Directed polymers and the quantum Toda lattice. Ann. Probab. 40 (2012) 437–458. | MR 2952082 | Zbl 1245.82091
.[16] Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38 (2005) L549–L556. | MR 2165697
.[17] Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31 (1998) 6057–6071. | MR 1633078 | Zbl 1085.83501
and .[18] KPZ scaling theory and the semi-discrete directed polymer model. MSRI Proceedings, 2012. Available at arXiv:1201.0645.
.[19] Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994) 151–174. | MR 1257246 | Zbl 0789.35152
and .