Nous considérons un modèle d’évolution d’une population avec interaction entre les individus, où les taux de naissance et de mort sont fonction de la taille de la population. Nous obtenons la limite en grande population après renormalisation, qui est solution de l’EDS où est un bruit blanc sur . Nous donnons une représentation de cette diffusion à la Ray–Knight, en fonction des temps locaux d’un mouvement brownien réfléchi avec une dérive qui dépend du temps local accumulé par à son niveau courant, à travers la fonction .
We consider a discrete model of population dynamics with interaction between individuals, where the birth and death rates are nonlinear functions of the population size. We obtain the large population limit of a renormalization of our model as the solution of the SDE where is a time space white noise on . We give a Ray–Knight representation of this diffusion in terms of the local times of a reflected Brownian motion with a drift that depends upon the local time accumulated by at its current level, through the function .
@article{AIHPB_2015__51_4_1290_0, author = {Ba, Mamadou and Pardoux, \'Etienne}, title = {Branching processes with interaction and a generalized Ray--Knight Theorem}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1290-1313}, doi = {10.1214/14-AIHP621}, mrnumber = {3414448}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_4_1290_0} }
Ba, Mamadou; Pardoux, Etienne. Branching processes with interaction and a generalized Ray–Knight Theorem. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1290-1313. doi : 10.1214/14-AIHP621. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_4_1290_0/
[1] Stopping times and tightness. Ann. Probab. 6 (1978) 335–340. | MR 474446 | Zbl 0391.60007
.[2] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR 1700749 | Zbl 0172.21201
.[3] Stochastic equations, flows and measure-valued processes. Ann. Probab. 40 (2012) 813–857. | MR 2952093 | Zbl 1254.60088
and .[4] Weak convergence of sequences of semi-martingales with applications to multitype branching processes. Adv. in Appl. Probab. 18 (1986) 20–65. | MR 827331 | Zbl 0595.60008
and .[5] The branching process with logistic growth. Ann. Probab. 15 (2005) 1506–1535. | MR 2134113 | Zbl 1075.60112
.[6] Height and the total mass of the forest of genealogical trees of a large population with general competition. ESAIM Probab. Stat. 19 (2015) 172–193. | MR 3386369
and .[7] Trees under attack: A Ray–Knight representation of Feller’s branching diffusion with logistic growth. Probab. Theory Related Fields 155 (2013) 583–619. | MR 3034788 | Zbl 1266.60146
, and .[8] Self-avoiding random walks: A Brownian motion model with local time drift. Probab. Theory Related Fields 74 (1987) 271–287. | MR 871255 | Zbl 0611.60052
, and .[9] From Brownian motion with a local time drift to Feller’s branching diffusion with logistic growth. Electron. Commun. Probab. 16 (2011) 720–731. | MR 2861436 | Zbl 1245.60079
and .[10] A path-valued Markov process indexed by the ancestral mass. ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015) 193–212. | MR 3343482
and .[11] Continuous Martingales and Brownian Motion, 3d edition. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006
and .[12] Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin, 1979. | MR 532498 | Zbl 0426.60069
and .