Nous considérons un mouvement brownien branchant avec absorption critique, issu d’une particule en , dans lequel les particules se déplacent selon des mouvement browniens réels indépendants avec une dérive critique de , et sont absorbées en zero. Nous obtenons des résultats asymptotiques sur le comportement de ce processus avant son extinction, quand la position de la particule initiale tend vers l’infini. En particulier nous obtenons des éstimées sur le nombre de particules dans le système, la position de la particule la plus à droite, et la configuration des particules à un instant typique.
We consider critical branching Brownian motion with absorption, in which there is initially a single particle at , particles move according to independent one-dimensional Brownian motions with the critical drift of , and particles are absorbed when they reach zero. Here we obtain asymptotic results concerning the behavior of the process before the extinction time, as the position of the initial particle tends to infinity. We estimate the number of particles in the system at a given time and the position of the right-most particle. We also obtain asymptotic results for the configuration of particles at a typical time.
@article{AIHPB_2015__51_4_1215_0, author = {Berestycki, Julien and Berestycki, Nathana\"el and Schweinsberg, Jason}, title = {Critical branching brownian motion with absorption: Particle configurations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1215-1250}, doi = {10.1214/14-AIHP613}, mrnumber = {3414446}, zbl = {1329.60300}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_4_1215_0} }
Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason. Critical branching brownian motion with absorption: Particle configurations. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1215-1250. doi : 10.1214/14-AIHP613. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_4_1215_0/
[1] Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. | MR 3101852 | Zbl 1284.60154
, , and .[2] The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. | MR 3129797 | Zbl 1286.60045
, and .[3] Quasi-stationary distributions and Fleming–Viot processes in finite spaces. J. Appl. Probab. 48 (2011) 322–332. | MR 2840302 | Zbl 1219.60081
, and .[4] Fleming–Viot selects the minimal quasi-stationary distribution: The Galton–Watson case. Ann. Inst. Henri Poincaré. To appear, 2015. Available at arXiv:1206.6114.
, , and .[5] The genealogy of branching Brownian motion with absorption. Ann. Probab. 41 (2013) 527–618. | MR 3077519 | Zbl 1304.60088
, and .[6] Critical branching Brownian motion with absorption: Survival probability. Probab. Theory Related Fields 160 (2014) 489–520. | MR 3278914 | Zbl 06380858
, and .[7] Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (285) (1983) iv+190. | MR 705746 | Zbl 0517.60083
.[8] Noisy traveling waves: Effect of selection on genealogies. Europhys. Lett. 76 (2006) 1–7. | MR 2299937
, , and .[9] Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization. Phys. Rev. E (3) 76 (2007) 041104. | MR 2365627
, , and .[10] Configurational transition in a Fleming–Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A: Math. Gen. 29 (1996) 2633–2642. | Zbl 0901.60054
, , and .[11] A Fleming–Viot particle representation of the Dirichlet Laplacian. Comm. Math. Phys. 214 (2000) 679–703. | MR 1800866 | Zbl 0982.60078
, and .[12] Hydrodynamic limit for a Fleming–Viot type system. Stochastic Process. Appl. 110 (2004) 111–143. | MR 2052139 | Zbl 1075.60124
and .[13] Immortal particle for a catalytic branching process. Probab. Theory Related Fields 153 (2011) 333–361. | MR 2925577 | Zbl 1251.60064
and .[14] A short proof of the logarithmic Bramson correction in Fisher–KPP equations. Netw. Heterog. Media 8 (2013) 275–289. | MR 3043938 | Zbl 1275.35067
, , and .[15] The logarithmic delay of KPP fronts in a periodic medium. Preprint, arXiv:1211.6173.
, , and .[16] Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 (2007) 81–92. | MR 2300218 | Zbl 1132.60059
and .[17] Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: One-sided traveling waves. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 125–145. | Numdam | MR 2196975 | Zbl 1093.60059
, and .[18] The unscaled paths of branching Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 579–608. | Numdam | MR 2954267 | Zbl 1259.60102
and .[19] Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. | MR 1876169 | Zbl 0892.60001
.[20] Branching Brownian motion with absorption. Stochastic Process. Appl. 7 (1978) 9–47. | MR 494543 | Zbl 0383.60077
.[21] On the maximal displacement of a critical branching random walk. Probab. Theory Related Fields 162 (2015) 71–96. | MR 3350041
and .[22] Speed and fluctuations of -particle branching Brownian motion with spatial selection. Preprint, arXiv:1304.0562.
.[23] Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes, 1987 223–241. E. Çinlar, K. L. Chung and R. K. Getoor (Eds). Prog. Probab. Statist. 15. Birkhäuser, Boston, 1988. | MR 1046418 | Zbl 0652.60089
.[24] Branching diffusion processes in population genetics. Adv. in Appl. Probab. 8 (1976) 659–689. | MR 432250 | Zbl 0365.60081
.[25] Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31 (4) (1994) 911–920. | MR 1303922 | Zbl 0818.60071
and .[26] Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.) 56 (1947) 795–798. | MR 22045 | Zbl 0041.45602
.