Nous construisons une diffusion naturelle associée ê la géométrie aléatoire de la gravité quantique de Liouville. Formellement, il s’agît d’un mouvement Brownien dans un domaine du plan complexe, muni d’un tenseur de Riemann donné par , correctement renomalisé. Ici est une réalisation du champ libre Gaussien sur , et est un paramètre. Il est montré que ce processus est presque sûrement continu et possède certains propriétés d’invariance conforme. Une borne sur la dimension de Hausdorff des instants passés dans les points épais du champ libre Gaussien est obtenue, qui montre que cette diffusion passe Lebesue-presque tout son temps dans les points -épais, presque sûrement. Des résultats semblables mais plus profonds ont été indépendemment et simultanément obtenus par Garban, Rhodes et Vargas.
We construct the natural diffusion in the random geometry of planar Liouville quantum gravity. Formally, this is the Brownian motion in a domain of the complex plane for which the Riemannian metric tensor at a point is given by , appropriately normalised. Here is an instance of the Gaussian free field on and is a parameter. We show that the process is almost surely continuous and enjoys certain conformal invariance properties. We also estimate the Hausdorff dimension of times that the diffusion spends in the thick points of the Gaussian free field, and show that it spends Lebesgue-almost all its time in the set of -thick points, almost surely. Similar but deeper results have been independently and simultaneously proved by Garban, Rhodes and Vargas.
@article{AIHPB_2015__51_3_947_0, author = {Berestycki, Nathana\"el}, title = {Diffusion in planar Liouville quantum gravity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {947-964}, doi = {10.1214/14-AIHP605}, mrnumber = {3365969}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_3_947_0} }
Berestycki, Nathanaël. Diffusion in planar Liouville quantum gravity. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 947-964. doi : 10.1214/14-AIHP605. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_3_947_0/
[1] Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (3) (2003) 449–475. | MR 2021198 | Zbl 1032.60046
and .[2] KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys. 289 (2) (2009) 653–662. | MR 2506765 | Zbl 1170.83006
and .[3] Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk. Acta Math. 186 (2) (2001) 239–270. | MR 1846031 | Zbl 1008.60063
, , and .[4] Liouville quantum gravity and KPZ. Invent. Math. 185 (2) (2011) 333–393. | MR 2819163 | Zbl 1226.81241
and .[5] Quantum gravity and the KPZ formula. Bourbaki seminar, 1052, March 2012.
.[6] Liouville Brownian motion. Available at arXiv.
, and .[7] Thick points of the Gaussian free field. Ann. Probab. 38 (2010) 896–926. | MR 2642894 | Zbl 1201.60047
, and .[8] Une inégalité du type Slepian et Gordon sur les processus Gaussiens. Israel J. Math. 55 (1) (1986) 109–110. | MR 858463 | Zbl 0611.60034
.[9] Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 2010. | MR 2604525 | Zbl 1243.60002
and .[10] Sufficient conditions for the characteristic function of a two-dimensional isotropic distribution. (English. Ukrainian original) Theory Probab. Math. Statist. 53 (1996) 149–152. Translation from Teor. Jmovirn. Mat. Stat. 53 (1995) 138–141. | MR 1449115 | Zbl 0941.60034
.[11] Gaussian multiplicative chaos revisited. Ann. Probab. 38 (2010) 605–631. | MR 2642887 | Zbl 1191.60066
and .[12] KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15 (2011) 358–371. | Numdam | MR 2870520 | Zbl 1268.60070
and .[13] Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 (1989) 521–541. | MR 2322706 | Zbl 1132.60072
.