Effective resistances for supercritical percolation clusters in boxes
Abe, Yoshihiro
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015), p. 935-946 / Harvested from Numdam

On considère la percolation de Bernoulli par arêtes dans le régime surcritique. Soit 𝒞 n le plus grand amas de percolation dans [-n,n] d d avec d2. Nous obtenons une estimation précise de la résistance effective sur 𝒞 n . Comme application, nous montrons que le temps de recouvrement d’une marche simple sur 𝒞 n est de l’ordre de n d (logn) 2 . En remarquant que le temps de recouvrement d’une marche simple sur [-n,n] d d est de l’ordre de n d logn quand d3 (et de n 2 (logn) 2 quand d=2), ceci montre une différence quantitative entre les deux marches si d3.

Let 𝒞 n be the largest open cluster for supercritical Bernoulli bond percolation in [-n,n] d d with d2. We obtain a sharp estimate for the effective resistance on 𝒞 n . As an application we show that the cover time for the simple random walk on 𝒞 n is comparable to n d (logn) 2 . Noting that the cover time for the simple random walk on [-n,n] d d is of order n d logn for d3 (and of order n 2 (logn) 2 for d=2), this gives a quantitative difference between the two random walks for d3.

Publié le : 2015-01-01
DOI : https://doi.org/10.1214/14-AIHP604
@article{AIHPB_2015__51_3_935_0,
     author = {Abe, Yoshihiro},
     title = {Effective resistances for supercritical percolation clusters in boxes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {51},
     year = {2015},
     pages = {935-946},
     doi = {10.1214/14-AIHP604},
     mrnumber = {3365968},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_3_935_0}
}
Abe, Yoshihiro. Effective resistances for supercritical percolation clusters in boxes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 935-946. doi : 10.1214/14-AIHP604. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_3_935_0/

[1] Y. Abe. Cover times for sequences of reversible Markov chains on random graphs. Kyoto J. Math. 54 (2014) 555–576. | MR 3263552 | Zbl 06408817

[2] O. Angel, I. Benjamini, N. Berger and Y. Peres. Transience of percolation clusters on wedges. Electron. J. Probab. 11 (2006) 655–669. | MR 2242658 | Zbl 1109.60062

[3] P. Antal and A. Pisztora. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036–1048. | MR 1404543 | Zbl 0871.60089

[4] M. T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004) 3024–3084. | MR 2094438 | Zbl 1067.60101

[5] M. T. Barlow, Y. Peres and P. Sousi. Collisions of random walks. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 922–946. | Numdam | MR 3052399 | Zbl 1285.60073

[6] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83–120. | MR 2278453 | Zbl 1107.60066

[7] I. Benjamini and G. Kozma. A resistance bound via an isoperimetric inequality. Combinatorica 25 (2005) 645–650. Available at arXiv:math/0212322v2. | MR 2199429 | Zbl 1098.60075

[8] I. Benjamini and E. Mossel. On the mixing time of a simple random walk on the super critical percolation cluster. Probab. Theory Related Fields 125 (2003) 408–420. | MR 1967022 | Zbl 1020.60037

[9] I. Benjamini, R. Pemantle and Y. Peres. Unpredictable paths and percolation. Ann. Probab. 26 (1998) 1198–1211. | MR 1634419 | Zbl 0937.60070

[10] D. Boivin and C. Rau. Existence of the harmonic measure for random walks on graphs and in random environments. J. Stat. Phys. 150 (2013) 235–263. Available at arXiv:1111.5326v2. | MR 3022458 | Zbl 1259.82047

[11] J. T. Chayes and L. Chayes. Bulk transport properties and exponent inequalities for random resistor and flow networks. Comm. Math. Phys. 105 (1986) 133–152. | MR 847132 | Zbl 0617.60099

[12] X. Chen and D. Chen. Two random walks on the open cluster of 2 meet infinitely often. Sci. China Math. 53 (2010) 1971-1978. | MR 2679079 | Zbl 1216.05147

[13] Z.-Q. Chen, D. A. Croydon and T. Kumagai. Quenched invariance principles for random walks and elliptic diffusions in random media with boundary. Available at arXiv:1306.0076v1. | MR 3353810

[14] O. Couronné and R. J. Messikh. Surface order large deviations for 2D FK-percolation and Potts models. Stochastic Process. Appl. 113 (2004) 81–99. | MR 2078538 | Zbl 1080.60020

[15] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky and P. Tiwari. The electrical resistance of a graph captures its commute and cover times. Comput. Complexity 6 (1996/1997) 312–340. | MR 1613611 | Zbl 0905.60049

[16] J. Ding, J. R. Lee and Y. Peres. Cover times, blanket times, and majorizing measures. Ann. of Math. (2) 175 (2012) 1409–1471. | MR 2912708 | Zbl 1250.05098

[17] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. Carus Math. Monogr. 22. Math. Assoc. Amer., Washington, DC, 1984. | MR 920811 | Zbl 0583.60065

[18] G. Grimmett and H. Kesten. First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete 66 (1984) 335–366. | MR 751574 | Zbl 0525.60098

[19] G. R. Grimmett, H. Kesten and Y. Zhang. Random walk on the infinite cluster of the percolation model. Probab. Theory Related Fields 96 (1993) 33–44. | MR 1222363 | Zbl 0791.60095

[20] O. Häggström and E. Mossel. Nearest-neighbor walks with low predictability profile and percolation in 2+ε dimensions. Ann. Probab. 26 (1998) 1212–1231. | MR 1640343 | Zbl 0937.60071

[21] C. Hoffman. Energy of flows on Z 2 percolation clusters. Random Structures Algorithms 16 (2000) 143–155. | MR 1742348 | Zbl 0947.60094

[22] C. Hoffman and E. Mossel. Energy of flows on percolation clusters. Potential Anal. 14 (2001) 375–385. | MR 1825692 | Zbl 1030.60071

[23] H. Kesten. Percolation Theory for Mathematicians. Progress in Probability and Statistics. Birkhäuser, Boston, MA, 1982. | MR 692943 | Zbl 0522.60097

[24] G. Kozma. Personal communication.

[25] T. Kumagai. Random Walks on Disordered Media and Their Scaling Limits. École d’Été de Probabilités de Saint-Flour XL-2010. Lecture Notes in Mathematics 2101. Springer, Cham, 2014. | MR 3156983 | Zbl 06234406

[26] D. A. Levin, Y. Peres and E. L. Wilmer. Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson. | MR 2466937 | Zbl 1160.60001

[27] T. M. Liggett, R. H. Schonmann and A. M. Stacey. Domination by product measures. Ann. Probab. 25 (1997) 71–95. | MR 1428500 | Zbl 0882.60046

[28] D. Levin and Y. Peres. Energy and cutsets in infinite percolation clusters. In Proceedings of the Cortona Workshop on Random Walks and Discrete Potential Theory 264–278. M. Picardello and W. Woess (Eds). Cambridge Univ. Press, Cambridge, 1999. | MR 1802435 | Zbl 0957.60097

[29] R. Lyons and Y. Peres. Probability on Trees and Networks. Book in preparation. Current version available at http://mypage.iu.edu/~rdlyons/.

[30] P. Mathieu and A. L. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287–2307. | MR 2345229 | Zbl 1131.82012

[31] P. Mathieu and E. Remy. Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004) 100–128. | MR 2040777 | Zbl 1078.60085

[32] P. Matthews. Covering problems for Brownian motion on spheres. Ann. Probab. 16 (1988) 189–199. | MR 920264 | Zbl 0638.60014

[33] G. Pete. A note on percolation on d : Isoperimetric profile via exponential cluster repulsion. Electron. Commun. Probab. 13 (2008) 377–392. | MR 2415145 | Zbl 1191.60116

[34] A. Pisztora. Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields 104 (1996) 427–466. | MR 1384040 | Zbl 0842.60022

[35] V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219–244. | MR 2063376 | Zbl 1070.60090