Cette article montre que dans la percolation de Bernoulli par arête en grande dimension, retirer d’une composante connexe infinie de faible densité une composante connexe de densité beaucoup plus faible laisse une composante connexe infinie. Cette observation a des implications pour le processus de feux de forêt de van den Berg–Brouwer, également connu sous le nom de percolation auto-destructive, en dimension suffisamment grande.
We show that in high dimensional Bernoulli bond percolation, removing from a thin infinite cluster a much thinner infinite cluster leaves an infinite component. This observation has implications for the van den Berg–Brouwer forest fire process, also known as self-destructive percolation, for dimension high enough.
@article{AIHPB_2015__51_3_862_0, author = {Ahlberg, Daniel and Duminil-Copin, Hugo and Kozma, Gady and Sidoravicius, Vladas}, title = {Seven-dimensional forest fires}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {862-866}, doi = {10.1214/13-AIHP587}, mrnumber = {3365964}, zbl = {1323.60123}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_3_862_0} }
Ahlberg, Daniel; Duminil-Copin, Hugo; Kozma, Gady; Sidoravicius, Vladas. Seven-dimensional forest fires. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 862-866. doi : 10.1214/13-AIHP587. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_3_862_0/
[1] Introduction to Percolation Theory, 2nd edition. Taylor and Francis, London, 1994. | MR 849782 | Zbl 0990.82530
and .[2] Bernoulli and self-destructive percolation on non-amenable graphs. Electron. J. Probab. 19 (2014) 1–6. | MR 3233202 | Zbl 06349198
, and .[3] Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2) (2008) 374–392. | Numdam | MR 2446329 | Zbl 1187.60034
, , and .[4] Percolation of finite clusters and infinite surfaces. Math. Proc. Cambridge Phil. Soc. 156 (2014) 263–279. | MR 3177869 | Zbl 1303.60090
, and .[5] The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 (1879) (1990) 439–457. | MR 1068308 | Zbl 0711.60100
and .[6] Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36 (2) (2008) 530–593. | MR 2393990 | Zbl 1142.82006
.[7] Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 (1) (2003) 349–408. | MR 1959796 | Zbl 1044.82006
, and .[8] Percolation Theory for Mathematicians. Progress in Probability and Statistics 2. Birkhäuser, Boston, MA, 1982. | MR 692943 | Zbl 0522.60097
.[9] Arm exponents in high dimensional percolation. J. Amer. Math. Soc. 24 (2) (2011) 375–409. | MR 2748397 | Zbl 1219.60085
and .[10] Domination by product measures. Ann. Probab. 25 (1) (1997) 71–95. | MR 1428500 | Zbl 0882.60046
, and .[11] Self-destructive percolation. Random Structures Algorithms 24 (4) (2004) 480–501. | MR 2060632 | Zbl 1054.60105
and .[12] Box-crossings and continuity results for self-destructive percolation in the plane. In In and Out of Equilibrium 2 117–135. Progr. Probab. 60. Birkhäuser, Basel, 2008. | MR 2477379 | Zbl 1173.82329
, and .[13] Linear lower bounds for for a class of 2D self-destructive percolation models. Random Structures Algorithms 34 (4) (2009) 520–526. | MR 2531782 | Zbl 1245.60097
and .[14] Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (3) (1985) 556–569. | MR 799280 | Zbl 0571.60019
and .