Nous considérons l’estimateur à noyau de l’indice des valeurs extrêmes conditionnel présenté dans Goegebeur, Y., Guillou, A., Schorgen, G. (2013). Nonparametric regression estimation of conditional tails – the random covariate case. Nous montrons la consistance uniforme presque sûre de cet estimateur sur les compacts et nous calculons sa vitesse de convergence presque sûre.
We consider a nonparametric regression estimator of conditional tails introduced by Goegebeur, Y., Guillou, A., Schorgen, G. (2013). Nonparametric regression estimation of conditional tails – the random covariate case. It is shown that this estimator is uniformly strongly consistent on compact sets and its rate of convergence is given.
@article{AIHPB_2015__51_3_1190_0, author = {Goegebeur, Yuri and Guillou, Armelle and Stupfler, Gilles}, title = {Uniform asymptotic properties of a nonparametric regression estimator of conditional tails}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1190-1213}, doi = {10.1214/14-AIHP624}, mrnumber = {3365978}, zbl = {1326.62089}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_3_1190_0} }
Goegebeur, Yuri; Guillou, Armelle; Stupfler, Gilles. Uniform asymptotic properties of a nonparametric regression estimator of conditional tails. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1190-1213. doi : 10.1214/14-AIHP624. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_3_1190_0/
[1] Nonparametric frontier estimation: A conditional quantile-based approach. Econometric Theory 21 (2) (2005) 358–389. | MR 2179542 | Zbl 1062.62252
, and .[2] Statistics of Extremes – Theory and Applications. Wiley Series in Probability and Statistics. Wiley, Chichester, 2004. With contributions from Daniel de Waal and Chris Ferro. | MR 2108013 | Zbl 1070.62036
, , and .[3] Regular Variation. Cambridge Univ. Press, Cambridge, 1987. | MR 898871 | Zbl 0667.26003
, and .[4] Generalized additive modelling of sample extremes. J. R. Stat. Soc. Ser. C. Appl. Stat. 54 (2005) 207–222. | MR 2134607 | Zbl 05188681
and .[5] A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statistics 23 (4) (1952) 493–507. | MR 57518 | Zbl 0048.11804
.[6] On kernel smoothing for extremal quantile regression. Bernoulli 19 (5B) (2013) 2557–2589. | MR 3160564 | Zbl 1281.62097
, and .[7] Kernel estimators of extreme level curves. Test 20 (2) (2011) 311–333. | MR 2834049 | Zbl 06106923
, , and .[8] Robust nonparametric estimators of monotone boundaries. J. Multivariate Anal. 96 (2005) 311–331. | MR 2204981 | Zbl 1077.62021
and .[9] Local likelihood smoothing of sample extremes. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 (2000) 191–208. | MR 1747404 | Zbl 0942.62058
and .[10] Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B Stat. Methodol. 52 (1990) 393–442. | MR 1086795 | Zbl 0706.62039
and .[11] An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab. 13 (1) (2000) 1–37. | MR 1744994 | Zbl 0995.62042
and .[12] A moving window approach for nonparametric estimation of the conditional tail index. J. Multivariate Anal. 99 (2008) 2368–2388. | MR 2463396 | Zbl 1151.62040
and .[13] Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels. Extremes 13 (2010) 177–204. | MR 2643556 | Zbl 1238.62136
and .[14] Estimation of the conditional tail index using a smoothed local Hill estimator. Extremes 17 (2014) 45–75. | MR 3179970 | Zbl 1302.62076
and .[15] Uniform strong consistency of a frontier estimator using kernel regression on high order moments. ESAIM. To appear, 2015. DOI:10.1051/ps/2013050. | MR 3334007 | Zbl 06405011
, and .[16] Nonparametric regression estimation of conditional tails – the random covariate case. Statistics 48 (2014) 732–755. | MR 3234058 | Zbl 06382056
, and .[17] Extreme Value Theory: An Introduction. Springer, New York, 2006. | MR 2234156 | Zbl 1101.62002
and .[18] On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B Stat. Methodol. 44 (1982) 37–42. | MR 655370 | Zbl 0521.62024
.[19] Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Statist. Sci. 15 (2000) 153–167. | MR 1788730
and .[20] Strong uniform consistency rates for estimators of conditional functionals. Ann. Statist. 16 (1988) 1428–1449. | MR 964932 | Zbl 0672.62050
, and .[21] Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 13 (4) (1985) 1465–1481. | MR 811503 | Zbl 0594.62043
and .[22] A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 (1975) 1163–1174. | MR 378204 | Zbl 0323.62033
.[23] Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13–30. | MR 144363 | Zbl 0127.10602
.[24] Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33 (1947) 25–31. | MR 19852 | Zbl 0030.20101
and .[25] Asymptotic properties of a conditional quantile estimator with randomly truncated data. J. Multivariate Anal. 100 (2009) 546–559. | MR 2483437 | Zbl 1154.62027
, and .[26] Weak and strong uniform consistency of kernel regression estimates. Z. Wahrsch. Verw. Gebiete 61 (1982) 405–415. | MR 679685 | Zbl 0495.62046
and .[27] On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965) 186–190. | MR 172400 | Zbl 0134.36302
.[28] On estimation of a probability density function and mode. Ann. Math. Statist. 33 (3) (1962) 1065–1076. | MR 143282 | Zbl 0116.11302
.[29] Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (3) (1956) 832–837. | MR 79873 | Zbl 0073.14602
.[30] Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 (1) (1978) 177–184. | MR 471166 | Zbl 0376.62024
.[31] Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone (with discussion). Statist. Sci. 4 (1989) 367–393. | MR 1041763 | Zbl 0955.62646
.[32] A law of the logarithm for kernel density estimators. Ann. Probab. 10 (1982) 414–422. | MR 647513 | Zbl 0493.62040
.[33] Tail index regression. J. Amer. Statist. Assoc. 104 (487) (2009) 1233–1240. | MR 2750246
and .