Dans cet article on prouve un TCL pour des fonctionnelles nonlinéaires de champs aléatoires sur la sphère avec bornes en variation totale dans le sens de la limite en haute fréquence. Les suites de champs aléatoires que l’on considère sont des moyennes régularisées de fonctions propres gaussiennes sur la sphère qui peuvent être vues comme des coefficients aléatoires d’ondelettes/needlets continues. En particulier on se concentre sur le polyspectre en needlets lequel est un outil couramment utilisé dans l’analyse de la nongaussianité en astrophysique et dans le domaine des ensembles de niveau. Nos résultats sont basés sur des approximations de type Stein–Malliavin pour des fonctionnelles nonlinéaires de champs gaussiens ainsi que sur le calcul explicite de la limite en haute fréquence de leur variance, ce qui pourrait constituer un résultat ayant un interêt en lui même.
This paper provides quantitative Central Limit Theorems for nonlinear transforms of spherical random fields, in the high-frequency limit. The sequences of fields that we consider are represented as smoothed averages of spherical Gaussian eigenfunctions and can be viewed as random coefficients from continuous wavelets/needlets; as such, they are of immediate interest for spherical data analysis. In particular, we focus on so-called needlets polyspectra, which are popular tools for non-Gaussianity analysis in the astrophysical community, and on the area of excursion sets. Our results are based on Stein–Malliavin approximations for nonlinear transforms of Gaussian fields, and on an explicit derivation on the high-frequency limit of their variances, which may have some independent interest.
@article{AIHPB_2015__51_3_1159_0, author = {Cammarota, Valentina and Marinucci, Domenico}, title = {On the limiting behaviour of needlets polyspectra}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1159-1189}, doi = {10.1214/14-AIHP609}, mrnumber = {3365977}, zbl = {1325.60014}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_3_1159_0} }
Cammarota, Valentina; Marinucci, Domenico. On the limiting behaviour of needlets polyspectra. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1159-1189. doi : 10.1214/14-AIHP609. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_3_1159_0/
[1] On the consistent separation of scale and variance for Gaussian random fields. Ann. Statist. 38 (2) (2010) 870–893. | MR 2604700 | Zbl 1204.60041
.[2] Asymptotics for spherical needlets. Ann. Statist. 37 (3) (2009) 1150–1171. | MR 2509070 | Zbl 1160.62087
, , and .[3] Subsampling needlet coefficients on the sphere. Bernoulli 15 (2009) 438–463. | MR 2543869 | Zbl 1200.62118
, , and .[4] Nodal domains statistics: A criterion for quantum chaos. Phys. Rev. Lett. 88 (2002) 114101.
, and .[5] The empirical process of some long-range dependent sequences with applications to -statistics. Ann. Statist. 17 (4) (1989) 1767–1783. | MR 1026312 | Zbl 0696.60032
and .[6] Modern Cosmology. Academic Press, San Diego, 2003.
.[7] On the linear term correction for needlets/wavelets non-Gaussianity estimators. Astrophysical Journal 755 (2012) 19.
, , , and .[8] Needlet–Whittle estimates on the unit sphere. Electron. J. Stat. 7 (2013) 597–646. | MR 3035267 | Zbl 06167949
, and .[9] The Cosmic Microwave Background. Cambridge Univ. Press, Cambridge, 2008.
.[10] Tables of Integrals, Series and Products, 7th edition. Academic Press, Elsevier, 2007. | MR 2360010 | Zbl 1208.65001
and .[11] The needlets bispectrum. Electron. J. Stat. 2 (2008) 332–367. | MR 2411439 | Zbl 06165696
and .[12] Special Functions and Their Applications. Prentice-Hall Inc., Englewood Cliffs, NJ, 1965. | MR 174795 | Zbl 0131.07002
.[13] Limit Theorems for Random Fields with Singular Spectrum. Mathematics and Its Applications 465. Kluwer Academic, Dordrecht, 1999. | MR 1687092 | Zbl 0963.60048
.[14] Fixed-domain asymptotics for a subclass of matérn-type Gaussian random fields. Ann. Statist. 33 (5) (2005) 2344–2394. | MR 2211089 | Zbl 1086.62111
.[15] Invariant Random Fields on Spaces with a Group Action. Probability and Its Applications. Springer, Heidelberg, 2012. | MR 2977490 | Zbl 1268.60006
.[16] Invariant random fields in vector bundles and application to cosmology. Ann. Inst. Henri Poincaré Probab. Stat. 47 (4) (2011) 1068–1095. | Numdam | MR 2884225 | Zbl 1268.60072
.[17] Random Fields on the Sphere. Representation, Limit Theorem and Cosmological Applications. Cambridge Univ. Press, Cambridge, 2011. | MR 2840154 | Zbl 1260.60004
and .[18] Mean square continuity on homogeneous spaces of compact groups. Electron. Commun. Probab. 18 (2013) no. 37, 10. | MR 3064996 | Zbl 06346886
and .[19] Spherical needlets for CMB data analysis. Monthly Notices of the Royal Astronomical Society 383 (2) (2008) 539–545.
, , , , , , , and .[20] High-frequency asymptotics for Lipschitz–Killing curvatures of excursion sets on the sphere, 2013. Available at arXiv:1303.2456. | MR 3449324
and .[21] On the area of excursion sets of spherical Gaussian eigenfunctions. J. Math. Phys. 52 (2011) 093301. | MR 2867816 | Zbl 1272.82017
and .[22] The defect variance of random spherical harmonics. J. Phys. A 44 (2011) 355206. | Zbl 1232.60039
and .[23] On nonlinear functionals of random spherical eigenfunctions. Comm. Math. Phys. 327 (3) (2014) 849–872. | MR 3192051 | Zbl 06298013
and .[24] Cosmological applications of a wavelet analysis on the sphere. J. Fourier Anal. Appl. 13 (4) (2007) 495–510. | MR 2329015 | Zbl 1206.85002
, , , , , , , and .[25] Localized tight frames on spheres. SIAM J. Math. Anal. 38 (2006) 574–594. | MR 2237162 | Zbl 1143.42034
, and .[26] Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 (1–2) (2009) 75–118. | MR 2520122 | Zbl 1175.60053
and .[27] Normal Approximations Using Malliavin Calculus: From Stein’s Method to Universality. Cambridge Univ. Press, Cambridge, 2012. | MR 2962301 | Zbl 1266.60001
and .[28] Wiener Chaos: Moments, Cumulants and Diagrams. A Survey with Computer Implementations. Springer, Milan, 2008. | MR 2791919 | Zbl 1231.60003
and .[29] Integrated Sachs–Wolfe effect from the cross correlation of WMAP3 year and the NRAO VLA sky survey data: New results and constraints on dark energy. Phys. Rev. D 74 (2006) 043524.
, and .[30] Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity, 2013. Available at arXiv:1303.5084.
.[31] Planck 2013 results. XXII. Isotropy and statistics of the CMB, 2013. Available at arXiv:1303.5083.
.[32] An estimate of the primordial non-Gaussianity parameter using the needlet bispectrum from WMAP. Astrophysical Journal 701 (1) (2009) 369–376.
, , , , and .[33] Directional variations of the non-Gaussianity parameter . Astrophysical Journal 708 (2) (2010) 1321–1325.
, , , , and .[34] Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity. Cambridge Univ. Press, Cambridge, 2010. | MR 2643260 | Zbl 1196.94008
, and .[35] Interpolation of Spatial Data. Some Theory for Kriging. Springer Series in Statistics. Springer, New York, 1999. | MR 1697409 | Zbl 0924.62100
.[36] Orthogonal Polynomials, 4th edition. Colloquium Publications. American Mathematical Society, Providence, RI, 1975. | MR 372517
.[37] Quantum Theory of Angular Momentum. World Scientific, Teaneck, NJ, 1988. | MR 1022665 | Zbl 0725.00003
, and .[38] On the rate of convergence for central limit theorems of sojourn times of Gaussian fields. Stochastic Process. Appl. 123 (6) (2013) 2158–2174. | MR 3038501 | Zbl 1302.60050
.[39] On fixed-domain asymptotics and covariance tapering in Gaussian random field models. Electron. J. Stat. 5 (2011) 238–269. | MR 2792553 | Zbl 1274.62643
and .[40] On the distribution of the nodal sets of random spherical harmonics. J. Math. Phys. 50 (1) (2009) 013521. | MR 2492631 | Zbl 1200.58021
.[41] Fluctuation of the nodal length of random spherical harmonics. Comm. Math. Phys. 298 (3) (2010) 787–831. | MR 2670928 | Zbl 1213.33019
.