Nous considérons une équation de Kolmogorov elliptique dans un sous-ensemble convexe d’un espace de Hilbert séparable . L’opérateur de Kolmogorov est une réalisation de , où est un opérateur auto-adjoint dans et est une fonction convexe. Nous prouvons que pour et la solution faible appartient à l’espace de Sobolev , où est la mesure log-concave associée au système. Nous prouvons aussi des estimations maximales sur le gradient de qui permettent de montrer que satisfait des conditions au bord de Neumann au sens des traces à la frontière de . Les résultats généraux sont appliqués aux équations de réaction–diffusion de Kolmogorov et à l’équation de Cahn–Hilliard stochastique dans des ensembles convexes d’espaces de Hilbert appropriés.
We consider an elliptic Kolmogorov equation in a convex subset of a separable Hilbert space . The Kolmogorov operator is a realization of , is a self-adjoint operator in and is a convex function. We prove that for and the weak solution belongs to the Sobolev space , where is the log-concave measure associated to the system. Moreover we prove maximal estimates on the gradient of , that allow to show that satisfies the Neumann boundary condition in the sense of traces at the boundary of . The general results are applied to Kolmogorov equations of reaction–diffusion and Cahn–Hilliard stochastic PDEÕs in convex sets of suitable Hilbert spaces.
@article{AIHPB_2015__51_3_1102_0, author = {Da Prato, Giuseppe and Lunardi, Alessandra}, title = {Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1102-1123}, doi = {10.1214/14-AIHP611}, mrnumber = {3365974}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_3_1102_0} }
Da Prato, Giuseppe; Lunardi, Alessandra. Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1102-1123. doi : 10.1214/14-AIHP611. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_3_1102_0/
[1] Intégration géométrique sur l’espace de Wiener. Bull. Sci. Math. 112 (1988) 3–52. | MR 942797 | Zbl 0656.60046
and .[2] Existence and stability for Fokker–Planck equations with log-concave reference measure. Probab. Theory Related Fields 145 (2009) 517–564. | MR 2529438 | Zbl 1235.60105
, and .[3] The generator of the transition semigroup corresponding to a stochastic variational inequality. Comm. Partial Differential Equations 33 (2008) 1318–1338. | MR 2450160 | Zbl 1155.60034
and .[4] Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space. Ann. Probab. 37 (2009) 1427–1458. | MR 2546750 | Zbl 1205.60141
, and .[5] Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 699–724. | Numdam | MR 2841072 | Zbl 1230.60081
, and .[6] Gaussian Measures. Amer. Math. Soc., Providence, 1998. | MR 1642391 | Zbl 0913.60035
.[7] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973. | MR 348562 | Zbl 0252.47055
.[8] Traces of Sobolev functions on regular surfaces in infinite dimensions. J. Funct. Anal. 266 (2014) 1948–1987. | MR 3150149 | Zbl 06299487
and .[9] Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500–532. | MR 1626174 | Zbl 0937.34046
.[10] An Introduction to Infinite Dimensional Analysis. Springer, Berlin, 2006. | MR 2244975 | Zbl 1109.46001
.[11] Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation. Ann. Inst. Henri Poincaré Probab. Statist. 40 (2004) 73–88. | Numdam | MR 2037474 | Zbl 1038.60055
, and .[12] Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Differential Equations 198 (2004) 35–52. | MR 2037749 | Zbl 1046.35025
and .[13] Sobolev regularity for a class of second order elliptic PDE’s in infinite dimension. Ann. Probab. 42 (2014) 2113–2160. | MR 3262499 | Zbl 1328.35291 | Zbl 06363041
and .[14] Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Notes 293. Cambridge Univ. Press, Cambridge, 2002. | MR 1985790 | Zbl 1012.35001
and .[15] Conservative stochastic Cahn–Hilliard equation with reflection. Ann. Probab. 35 (2007) 1706–1739. | MR 2349572 | Zbl 1130.60068
and .[16] Vector Measures. Mathematical Surveys 15. Amer. Math. Soc., Providence, RI, 1977. | MR 453964 | Zbl 0369.46039
and .[17] Hausdorff measures on the Wiener space. Potential Anal. 1 (1992) 177–189. | MR 1245885 | Zbl 1081.28500
and .[18] Fluctuations for interface model on a wall. Stochastic Process. Appl. 94 (2001) 1–27. | MR 1835843 | Zbl 1055.60096
and .[19] White noise driven by quasilinear SPDE’s with reflection. Probab. Theory Related Fields 93 (1992) 77–89. | MR 1172940 | Zbl 0767.60055
and .[20] The stochastic reflection problem on an infinite dimensional convex set and BV functions in a Gelfand triple. Ann. Probab. 40 (2012) 1759–1794. | MR 2978137 | Zbl 1267.60074
, and .[21] Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection. Probab. Theory Related Fields 123 (2002) 579–600. | MR 1921014 | Zbl 1009.60047
.