Nous considérons des principes d’invariance faibles (théorèmes limites fonctionnels) dans le domaine d’une loi stable. Un résultat général est obtenu en relevant de telles lois limites depuis un système dynamique induit vers le système original. Une classe importante d’exemples couverte par notre résultat est donnée par les transformations intermittentes à la Pomeau–Manneville, où la convergence pour le système induit est dans la topologie de Skorohod standard. Pour le système complet, il n’y a pas de convergence dans la topologie , mais nous prouvons la convergence dans la topologie .
We consider weak invariance principles (functional limit theorems) in the domain of a stable law. A general result is obtained on lifting such limit laws from an induced dynamical system to the original system. An important class of examples covered by our result are Pomeau–Manneville intermittency maps, where convergence for the induced system is in the standard Skorohod topology. For the full system, convergence in the topology fails, but we prove convergence in the topology.
@article{AIHPB_2015__51_2_545_0, author = {Melbourne, Ian and Zweim\"uller, Roland}, title = {Weak convergence to stable L\'evy processes for nonuniformly hyperbolic dynamical systems}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {545-556}, doi = {10.1214/13-AIHP586}, mrnumber = {3335015}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_2_545_0} }
Melbourne, Ian; Zweimüller, Roland. Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 545-556. doi : 10.1214/13-AIHP586. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_2_545_0/
[1] Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1 (2001) 193–237. | MR 1840194 | Zbl 1039.37002
and .[2] Weak convergence of sums of moving averages in the -stable domain of attraction. Ann. Probab. 20 (1992) 483–503. | MR 1143432 | Zbl 0747.60032
and .[3] Limit theorems for dispersing billiards with cusps. Comm. Math. Phys. 308 (2011) 479–510. | MR 2851150 | Zbl 1241.37005
, and .[4] Limit theorems in the stadium billiard. Comm. Math. Phys. 263 (2006) 461–512. | MR 2207652 | Zbl 1170.37314
and .[5] Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows. J. Stat. Phys. 133 (2008) 435–447. | MR 2448631 | Zbl 1161.82016
and .[6] Scaling limit for trap models on . Ann. Probab. 35 (2007) 2356–2384. | MR 2353391 | Zbl 1134.60064
and .[7] Markov extensions and decay of correlations for certain Hénon maps. Astérisque 261 (2000) 13–56. | MR 1755436 | Zbl 1044.37013
and .[8] Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, 1999. | MR 1700749 | Zbl 0172.21201
.[9] Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19–42. | MR 365692 | Zbl 0301.60035
.[10] Méthode de martingales et flow géodésique sur une surface de courbure constante négative. Ergodic Theory Dynam. Systems 21 (2001) 421–441. | MR 1827112 | Zbl 0983.37034
and .[11] Weak invariance principle and exponential bounds for some special functions of intermittent maps. High Dimensional Probability 5 (2009) 60–72. | MR 2797940 | Zbl 1243.37008
and .[12] Approximation by Brownian motion for Gibbs measures and flows under a function. Ergodic Theory Dynam. Systems 4 (1984) 541–552. | MR 779712 | Zbl 0554.60077
and .[13] Stochastic Processes. Wiley, New York, 1953. | MR 58896 | Zbl 0696.60003
.[14] Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen 21 (1976) 653–660. | MR 428388 | Zbl 0365.60025
.[15] Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems 23 (2003) 87–110. | MR 1971198 | Zbl 1140.37315
, and .[16] The central limit theorem for stationary processes. Soviet Math. Dokl. 10 (1969) 1174–1176. | MR 251785 | Zbl 0212.50005
.[17] Central limit theorems and suppression of anomalous diffusion for systems with symmetry. Preprint, 2012.
and .[18] Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128 (2004) 82–122. | MR 2027296 | Zbl 1038.37007
.[19] Statistical properties of a skew product with a curve of neutral points. Ergodic Theory Dynam. Systems 27 (2007) 123–151. | MR 2297091 | Zbl 1143.37022
.[20] Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38 (2010) 1639–1671. | MR 2663640 | Zbl 1207.60026
.[21] Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119–140. | MR 656227 | Zbl 0485.28016
and .[22] Central limit theorems and invariance principles for Lorenz attractors. J. London Math. Soc. 76 (2007) 345–364. | MR 2363420 | Zbl 1126.37006
and .[23] A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 (1999) 671–685. | MR 1695915 | Zbl 0988.37035
, and .[24] Statistical properties of endomorphisms and compact group extensions. J. London Math. Soc. 70 (2004) 427–446. | MR 2078903 | Zbl 1160.37331
and .[25] Almost sure invariance principle for nonuniformly hyperbolic systems. Comm. Math. Phys. 260 (2005) 131–146. | MR 2175992 | Zbl 1084.37024
and .[26] A vector-valued almost sure invariance principle for hyperbolic dynamical systems. Ann. Probab. 37 (2009) 478–505. | MR 2510014 | Zbl 1176.37006
and .[27] Central limit theorems and invariance principles for time-one maps of hyperbolic flows. Comm. Math. Phys. 229 (2002) 57–71. | MR 1917674 | Zbl 1098.37501
and .[28] Statistical limit theorems for suspension flows. Israel J. Math. 144 (2004) 191–209. | MR 2121540 | Zbl 1252.37010
and .[29] Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74 (1980) 189–197. | MR 576270 | Zbl 0578.76059
and .[30] The central limit theorem for geodesic flows on -dimensional manifolds of negative curvature. Israel J. Math. 16 (1973) 181–197. | MR 333121 | Zbl 0283.58010
.[31] Limit theorems for stochastic processes. Teor. Veroyatnost. i Primenen. 1 (1956) 289–319. | MR 84897 | Zbl 0074.33802
.[32] Limit laws and recurrence for the planar Lorentz process with infinite horizon. J. Stat. Phys. 129 (2007) 59–80. | MR 2349520 | Zbl 1128.82011
and .[33] Weak convergence to Lévy stable processes in dynamical systems. Stoch. Dyn. 10 (2010) 263–289. | MR 2652889 | Zbl 1206.60047
.[34] Stochastic-Process Limits. Springer Series in Operations Research. Springer, New York, 2002. | MR 1876437 | Zbl 0993.60001
.[35] Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147 (1998) 585–650. | MR 1637655 | Zbl 0945.37009
.[36] Recurrence times and rates of mixing. Israel J. Math. 110 (1999) 153–188. | MR 1750438 | Zbl 0983.37005
.[37] Stable limits for probability preserving maps with indifferent fixed points. Stoch. Dyn. 3 (2003) 83–99. | MR 1971188 | Zbl 1035.37001
.[38] Mixing limit theorems for ergodic transformations. J. Theoret. Probab. 20 (2007) 1059–1071. | MR 2359068 | Zbl 1137.60017
.