On s’intéresse à la limite d’échelle de grandes quadrangulations planaires à bord dont la longueur du bord est de l’ordre de la racine carrée du nombre de faces. On considère une suite d’entiers telle que tende vers un certain . Pour tout , on note une carte aléatoire uniformément distribuée dans l’ensemble des quadrangulations planaires enracinées à bord ayant faces internes et demi-arêtes sur le bord. Dans le cas où , on voit comme un espace métrique en munissant l’ensemble de ses sommets de la distance de graphe, renormalisée par le facteur . On montre que cet espace métrique converge en loi, tout du moins le long d’une sous-suite, vers un espace métrique limite aléatoire, au sens de la topologie de Gromov–Hausdorff. On montre que l’espace métrique limite est presque sûrement un espace de dimension de Hausdorff ayant un bord de dimension qui est homéomorphe au disque de dimension . Pour , on a également la même convergence mais cette fois-ci, l’extraction d’une sous-suite n’est plus nécessaire et la limite est l’espace métrique connu sous le nom de carte brownienne. Pour , le bon facteur d’échelle devient et on a convergence vers l’arbre continu brownien d’Aldous.
We discuss the scaling limit of large planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We consider a sequence of integers such that tends to some . For every , we denote by a random map uniformly distributed over the set of all rooted planar quadrangulations with a boundary having faces and half-edges on the boundary. For , we view as a metric space by endowing its set of vertices with the graph metric, rescaled by . We show that this metric space converges in distribution, at least along some subsequence, toward a limiting random metric space, in the sense of the Gromov–Hausdorff topology. We show that the limiting metric space is almost surely a space of Hausdorff dimension with a boundary of Hausdorff dimension that is homeomorphic to the two-dimensional disc. For , the same convergence holds without extraction and the limit is the so-called Brownian map. For , the proper scaling becomes and we obtain a convergence toward Aldous’s CRT.
@article{AIHPB_2015__51_2_432_0, author = {Bettinelli, J\'er\'emie}, title = {Scaling limit of random planar quadrangulations with a boundary}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {432-477}, doi = {10.1214/13-AIHP581}, mrnumber = {3335010}, zbl = {1319.60067}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_2_432_0} }
Bettinelli, Jérémie. Scaling limit of random planar quadrangulations with a boundary. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 432-477. doi : 10.1214/13-AIHP581. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_2_432_0/
[1] The continuum random tree. I. Ann. Probab. 19 (1) (1991) 1–28. | MR 1085326 | Zbl 0722.60013
.[2] The continuum random tree. III. Ann. Probab. 21 (1) (1993) 248–289. | MR 1207226 | Zbl 0791.60009
.[3] Regular convergence. Duke Math. J. 11 (1944) 441–450. | MR 10964 | Zbl 0061.39903
.[4] The number of degree-restricted rooted maps on the sphere. SIAM J. Discrete Math. 7 (1) (1994) 9–15. | MR 1259005 | Zbl 0794.05048
and .[5] Increase of a Lévy process with no positive jumps. Stochastics Stochastics Rep. 37 (4) (1991) 247–251. | MR 1149349 | Zbl 0739.60065
.[6] Path transformations of first passage bridges. Electron. Commun. Probab. 8 (2003) 155–166 (electronic). | MR 2042754 | Zbl 1061.60083
, and .[7] Scaling limits for random quadrangulations of positive genus. Electron. J. Probab. 15 (52) (2010) 1594–1644. | MR 2735376 | Zbl 1226.60047
.[8] The topology of scaling limits of positive genus random quadrangulations. Ann. Probab. 40 (5) (2012) 1897–1944. | MR 3025705 | Zbl 1255.60048
.[9] Convergence of Probability Measures. Wiley, New York, 1968. | MR 233396 | Zbl 0944.60003
.[10] A recursive approach to the model on random maps via nested loops. J. Phys. A 45 (2012) 045002. | MR 2874232 | Zbl 1235.82026
, and .[11] Planar maps as labeled mobiles. Electron. J. Combin. 11 (1) (2004) Research Paper 69 (electronic). | MR 2097335 | Zbl 1060.05045
, and .[12] Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42 (46) (2009) 465208. | MR 2552016 | Zbl 1179.82069
and .[13] A Course in Metric Geometry. Graduate Studies in Mathematics 33. American Mathematical Society, Providence, RI, 2001. | MR 1835418 | Zbl 0981.51016
, and .[14] A bijection for rooted maps on orientable surfaces. SIAM J. Discrete Math. 23 (3) (2009) 1587–1611. | MR 2563085 | Zbl 1207.05087
, and .[15] Random planar lattices and integrated super-Brownian excursion. Probab. Theory Related Fields 128 (2) (2004) 161–212. | MR 2031225 | Zbl 1041.60008
and .[16] Planar maps are well labeled trees. Canad. J. Math. 33 (5) (1981) 1023–1042. | MR 638363 | Zbl 0415.05020
and .[17] The Brownian cactus I. Scaling limits of discrete cactuses. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013) 340–373. | Numdam | MR 3088373 | Zbl 1275.60035
, and .[18] Uniform infinite planar quadrangulations with a boundary. Random Structures Algorithms. To appear, 2015. Available at arXiv:1202.5452. | MR 3366810
and .[19] Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi147. | MR 1954248 | Zbl 1037.60074
and .[20] Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften 153. Springer, New York, 1969. | MR 257325 | Zbl 0176.00801
.[21] Convergence in distribution of random metric measure spaces1–2) (2009) 285–322. | MR 2520129 | Zbl 1215.05161
, and .[22] Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics 152. Birkhäuser, Boston, MA, 1999. Based on the 1981 French original [MR0682063], with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates. | MR 1699320 | Zbl 0953.53002
.[23] The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions. Statist. Probab. Lett. 23 (1) (1995) 21–25. | MR 1333373 | Zbl 0819.60017
.[24] Poisson Processes. Oxford Studies in Probability 3. Oxford Univ. Press, New York, 1993. | MR 1207584 | Zbl 0771.60001
.[25] Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 1999. | MR 1714707 | Zbl 0938.60003
.[26] Random trees and applications. Probab. Surv. 2 (2005) 245–311 (electronic). | MR 2203728 | Zbl 1189.60161
.[27] The topological structure of scaling limits of large planar maps. Invent. Math. 169 (3) (2007) 621–670. | MR 2336042 | Zbl 1132.60013
.[28] Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2) (2010) 287–360. | MR 2746349 | Zbl 1214.53036
.[29] Uniqueness and universality of the Brownian map. Ann. Probab. 41 (2013) 2880–2960. | MR 3112934 | Zbl 1282.60014
.[30] Scaling limits of random planar maps with large faces. Ann. Probab. 39 (1) (2011) 1–69. | MR 2778796 | Zbl 1204.05088
and .[31] Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 (3) (2008) 893–918. | MR 2438999 | Zbl 1166.60006
and .[32] Conditioned Brownian trees. Ann. Inst. Henri Poincaré Probab. Stat. 42 (4) (2006) 455–489. | Numdam | MR 2242956 | Zbl 1107.60053
and .[33] Limit of normalized quadrangulations: The Brownian map. Ann. Probab. 34 (6) (2006) 2144–2202. | MR 2294979 | Zbl 1117.60038
and .[34] On the sphericity of scaling limits of random planar quadrangulations. Electron. Commun. Probab. 13 (2008) 248–257. | MR 2399286 | Zbl 1193.60016
.[35] Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 (5) (2009) 725–781. | MR 2571957 | Zbl 1228.05118
.[36] The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2013) 319–401. | MR 3070569 | Zbl 1278.60124
.[37] Limit Theorems of Probability Theory Sequences of Independent Random Variables. Oxford Studies in Probability 4. Oxford Univ. Press, New York, 1995. | MR 1353441 | Zbl 0826.60001
.[38] Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006
and .[39] Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees. Electron. J. Combin. 4 (1) (1997) Research Paper 20 (electronic). | MR 1465581 | Zbl 0885.05076
.[40] Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, Univ. Bordeaux 1, 1998.
.[41] Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete 23 (1972) 163–170. | MR 322923 | Zbl 0238.60006
.[42] A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7 (1) (1979) 143–149. | MR 515820 | Zbl 0392.60058
.[43] On sequences and limiting sets. Fund. Math. 25 (1935) 408–426. | JFM 61.0621.04
.[44] Regular convergence and monotone transformations. Amer. J. Math. 57 (4) (1935) 902–906. | JFM 61.0622.01 | MR 1507123
.