Nous étudions différentes percolations de Bernoulli sur les cartes aléatoires du demi-plan obtenues comme limites locales de triangulations ou quadrangulations planaires uniformes. En utilisant la propriété de Markov spatiale – ou épluchage (Geom. Funct. Anal. 13 (2003) 935–974) – de ces réseaux, nous prouvons une formule simple et universelle pour le paramètre critique de percolation par arêtes ou par sites sur ces cartes. Nos techniques nous permettent également de calculer certains exposants « annealed » presque-critiques et critiques comme la probabilité qu’un cluster ait un grand volume ou un grand périmètre.
We study Bernoulli percolations on random maps in the half-plane obtained as local limit of uniform planar triangulations or quadrangulations. Using the characteristic spatial Markov property or peeling process (Geom. Funct. Anal. 13 (2003) 935–974) of these random maps we prove a surprisingly simple universal formula for the critical threshold for bond and face percolations on these graphs. Our techniques also permit us to compute off-critical and critical annealed exponents related to percolation clusters such as the probabilities of a cluster having a large volume or perimeter.
@article{AIHPB_2015__51_2_405_0, author = {Angel, Omer and Curien, Nicolas}, title = {Percolations on random maps I: Half-plane models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {405-431}, doi = {10.1214/13-AIHP583}, mrnumber = {3335009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_2_405_0} }
Angel, Omer; Curien, Nicolas. Percolations on random maps I: Half-plane models. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 405-431. doi : 10.1214/13-AIHP583. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_2_405_0/
[1] Ballot theorems, old and new. In Horizons of Combinatorics. Bolyai Soc. Math. Stud. 17 9–35. Springer, Berlin, 2008. | MR 2432525 | Zbl 1151.91412
and .[2] The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1–72. Springer, Berlin, 2004. | MR 2023650 | Zbl 1037.60008
and .[3] Quantum Geometry: A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. | MR 1465433 | Zbl 1096.82500
, and .[4] Scaling of percolation on infinite planar maps, I. Available at arXiv:math/0501006.
.[5] Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 (2003) 935–974. | MR 2024412 | Zbl 1039.60085
.[6] Percolations on infinite random maps II, full-plane models. Unpublished manuscript.
and .[7] Classification of domain Markov half planar maps. Ann. Probab. To appear, 2015. Available at arXiv:1303.6582. | MR 3342664
and .[8] Uniform infinite planar triangulation. Comm. Math. Phys. 241 (2003) 191–213. | MR 2013797 | Zbl 1098.60010
and .[9] Hausdorff dimensions for . Ann. Probab. 32 (2004) 2606–2629. | MR 2078552 | Zbl 1055.60036
.[10] Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points. Geom. Funct. Anal. 23 (2013) 501–531. | MR 3053754 | Zbl 1274.60143
and .[11] Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 (2001) 23 (electronic). | MR 1873300 | Zbl 1010.82021
and .[12] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | Zbl 0938.60005
.[13] Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) Research Paper 69 (electronic). | MR 2097335 | Zbl 1060.05045
, and .[14] Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42 (2009) 465208. | MR 2552016 | Zbl 1179.82069
and .[15] Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 (2006) 879–917. | MR 2243873 | Zbl 1102.60007
and .[16] The Brownian plane. Available at arXiv:1204.5921. | MR 3278940 | Zbl 1305.05208
and .[17] A view from infinity of the uniform infinite planar quadrangulation. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013) 45–88. | MR 3083919 | Zbl 1277.05151
, and .[18] Uniform infinite planar quadrangulations with a boundary. Random Structures Algorithms. To appear, 2015. Available at arXiv:1202.5452. | MR 3366810
and .[19] On the exact asymptotic behaviour of the distribution of ladder epochs. Stochastic Process. Appl. 12 (1982) 203–214. | MR 651904 | Zbl 0482.60066
.[20] Liouville quantum gravity and KPZ. Invent. Math. 185 (2011) 333–393. | MR 2819163 | Zbl 1226.81241
and .[21] Combinatorial Enumeration. Wiley-Interscience Series in Discrete Mathematics. Wiley, New York, 1983. | MR 702512 | Zbl 0519.05001
and .[22] Recurrence of planar graph limits. Ann. of Math. (2) 177 (2013) 761–781. | MR 3010812 | Zbl 1262.05031
and .[23] Percolation on a fractal with the statistics of planar Feynman graphs: Exact solution. Modern Phys. Lett. A 17 (1989) 1691–1704. | MR 1016993
.[24] Fractal structure of 2D-quantum gravity. Modern Phys. Lett. A 3 (1988) 819–826. | MR 947880
, and .[25] Local structure of random quadrangulations. Available at arXiv:math/0512304.
.[26] On one property of distances in the infinite random quadrangulation. Available at arXiv:0805.1907.
.[27] Explicit enumeration of triangulations with multiple boundaries. Electron. J. Combin. 14 (2007) Research Paper 61 (electronic). | MR 2336338 | Zbl 1157.05031
.[28] Uniqueness and universality of the Brownian map. Ann. Probab. 41 (2013) 2880–2960. | MR 3112934 | Zbl 1282.60014
.[29] Scaling limits for the uniform infinite quadrangulation. Illinois J. Math. 54 (2010) 1163–1203. | MR 2928350 | Zbl 1259.60035
and .[30] Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007) 1642–1705. | MR 2349571 | Zbl 1208.05135
and .[31] Percolation on uniform infinite planar maps. Available at arXiv:1302.2851. | Zbl 1300.60114
and .[32] The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2013) 319–401. | MR 3070569 | Zbl 1278.60124
.[33] Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, 1998.
.[34] Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009) 177–217. | MR 2449127 | Zbl 1158.60014
and .[35] Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation. Nuclear Phys. B 441 (1995) 119–163. | MR 1329946 | Zbl 0990.81657
.