On considère un gaz sur réseau évoluant selon la dynamique de Kawasaki à température inverse sur le tore bi-dimensionel . Nous étudions l’évolution du processus parmi les états d’énergie minimale. Supposons la présence de particules, et qu’á l’état initial les sites du carré soient tous occupés. Nous montrons qu’á l’échelle de temps le processus évolue comme une chaîne de Markov sur qui saute d’un site vers un site à un taux strictement positif qui peut-être exprimé en terme de probabilités d’atteinte de dynamiques markoviennes élémentaires.
Consider a lattice gas evolving according to the conservative Kawasaki dynamics at inverse temperature on a two dimensional torus . We prove the tunneling behavior of the process among the states of minimal energy. More precisely, assume that there are particles, , and that the initial state is the configuration in which all sites of the square are occupied. We show that in the time scale the process evolves as a Markov process on which jumps from any site to any other site at a strictly positive rate which can be expressed in terms of the hitting probabilities of simple Markovian dynamics.
@article{AIHPB_2015__51_1_59_0, author = {Beltr\'an, J. and Landim, Claudio}, title = {Tunneling of the Kawasaki dynamics at low temperatures in two dimensions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {59-88}, doi = {10.1214/13-AIHP568}, mrnumber = {3300964}, zbl = {06412898}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_1_59_0} }
Beltrán, J.; Landim, C. Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 59-88. doi : 10.1214/13-AIHP568. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_1_59_0/
[1] Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140 (2010) 1065–1114. | MR 2684500 | Zbl 1223.60061
and .[2] Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Related Fields 152 (2012) 781–807. | MR 2892962 | Zbl 1251.60070
and .[3] Metastability of reversible finite state Markov processes. Stochastic Process. Appl. 121 (2011) 1633–1677. | MR 2811018 | Zbl 1223.60060
and .[4] Tunneling and metastability of continuous time Markov chains II. The nonreversible case. J. Stat. Phys. 149 (2012) 598–618. | MR 2998592 | Zbl 1260.82063
and .[5] Metastability in stochastic dynamics of disordered mean field models. Probab. Theory Related Fields 119 (2001) 99–161. | MR 1813041 | Zbl 1012.82015
, , and .[6] Metastability and low lying spectra in reversible Markov chains. Comm. Math. Phys. 228 (2002) 219–255. | MR 1911735 | Zbl 1010.60088
, , and .[7] Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary. Probab. Theory Related Fields 135 (2006) 265–310. | MR 2218873 | Zbl 1099.60066
, and .[8] Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. Ann. Probab. 38 (2010) 661–713. | MR 2642889 | Zbl 1193.60114
, and .[9] Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. J. Stat. Phys. 107 (2002) 757–779. | MR 1898856 | Zbl 1067.82041
and .[10] Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35 (1984) 603–634. | MR 749840 | Zbl 0591.60080
, , and .[11] Nucleation pattern at low temperature for local Kawasaki dynamics in two dimensions. Markov Process. Related Fields 11 (2005) 553–628. | MR 2191966 | Zbl 1109.82017
, and .[12] Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stochastic Process. Appl. 119 (2009) 737–774. | MR 2499857 | Zbl 1158.60043
, , , and .[13] Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus. Preprint, 2013. Available at arXiv:1305.4542. | MR 3353824
and .[14] Droplet growth for three dimensional Kawasaki dynamics. Probab. Theory Related Fields 125 (2003) 153–194. | MR 1961341 | Zbl 1040.60083
, , and .[15] Metastability and nucleation for conservative dynamics. J. Math. Phys. 41 (2000) 1424–1498. | MR 1757966 | Zbl 0977.82030
, and .[16] Quenched scaling limits of trap models. Ann. Probab. 39 (2011) 176–223. | MR 2778800 | Zbl 1211.60040
, and .[17] Universality of trap models in the ergodic time scale. Ann. Probab. To appear. Available at http://arxiv.org/abs/1208.5675, 2012. | MR 3265173 | Zbl 06369481
, and .[18] Metastability for a non-reversible dynamics: The evolution of the condensate in totally asymmetric zero range processes. Available at arXiv:1204.5987, 2012. | MR 3215575 | Zbl 1305.82045
.[19] On the essential features of metastability: Tunnelling Time and critical configurations. J. Stat. Phys. 115 (2004) 591–642. | MR 2070109 | Zbl 1157.82381
, , and .[20] Anisotropy effects in nucleation for conservative dynamics. J. Stat. Phys. 119 (2005) 539–595. | MR 2149934 | Zbl 1073.82026
, and .[21] Markov Chains. Cambridge Univ. Press, Cambridge, 1997. | Zbl 0938.60058
.[22] Markov Chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79 (1995) 613–647. | MR 1327899 | Zbl 1081.60541
and .[23] Markov Chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case. J. Stat. Phys. 84 (1996) 987–1041. | MR 1412076 | Zbl 1081.60542
and .[24] Metastable behavior of low-temperature Glauber dynamics with stirring. J. Stat. Phys. 80 (1995) 1165–1184. | MR 1349778 | Zbl 1081.82628
.[25] Renormalization group for Markov chains and application to metastability. J. Stat. Phys. 73 (1993) 83–121. | MR 1247859 | Zbl 1101.82330
.