Des cocycles de Feller stochastiques quantiques -homomorphes sont construits pour certains générateurs non bornés, et ainsi nous obtenons des dilatations pour des semigroupes dynamiques quantiques fortement continus sur des algèbres. Ceci généralise la construction d’un processus de Feller classique et de son semigroupe à partir d’un générateur donné. Notre construction est possible à condition que le générateur satisfasse une propriété d’invariance pour une sous-algèbre dense de la algèbre et obéisse aux relations de structure nécessaires; les itérations du générateur, lorsqu’elles sont appliquées à une famille génératrice de , doivent satisfaire à une condition de croissance. De plus, il est supposé que soit la sous-algèbre est engendrée par les isométries et est universelle, ou bien contient ses racines carrées. Ces conditions sont vérifiées dans quatre cas: marches aléatoires classiques sur les groupes discrets, le processus d’exclusion quantique symétrique introduit par Rebolledo et des flux sur le tore non commutatif et l’algèbre de rotation universelle.
It is shown how to construct -homomorphic quantum stochastic Feller cocycles for certain unbounded generators, and so obtain dilations of strongly continuous quantum dynamical semigroups on algebras; this generalises the construction of a classical Feller process and semigroup from a given generator. Our construction is possible provided the generator satisfies an invariance property for some dense subalgebra of the algebra and obeys the necessary structure relations; the iterates of the generator, when applied to a generating set for , must satisfy a growth condition. Furthermore, it is assumed that either the subalgebra is generated by isometries and is universal, or contains its square roots. These conditions are verified in four cases: classical random walks on discrete groups, Rebolledo’s symmetric quantum exclusion process and flows on the non-commutative torus and the universal rotation algebra.
@article{AIHPB_2015__51_1_349_0, author = {Belton, Alexander C. R. and Wills, Stephen J.}, title = {An algebraic construction of quantum flows with unbounded generators}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {349-375}, doi = {10.1214/13-AIHP578}, mrnumber = {3300974}, zbl = {06412908}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_1_349_0} }
Belton, Alexander C. R.; Wills, Stephen J. An algebraic construction of quantum flows with unbounded generators. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 349-375. doi : 10.1214/13-AIHP578. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_1_349_0/
[1] On the structure of Markov flows. Chaos Solitons Fractals 12 (14–15) (2001) 2639–2655. | MR 1857648 | Zbl 1016.46041
and .[2] The rotation algebra. Houston J. Math. 15 (1) (1989) 1–26. | MR 1002078 | Zbl 0703.22005
and .[3] Classical and quantum stochastic calculus. In Quantum Probability Communications X 1–52. R. L. Hudson and J. M. Lindsay (Eds). World Scientific, Singapore, 1998. | MR 1689473
.[4] Calcul stochastique non-commutatif. In Lectures on Probability Theory (Saint-Flour, 1993) 1–96. P. Bernard (Ed.). Lecture Notes in Mathematics 1608. Springer, Berlin, 1995. | MR 1383121 | Zbl 0878.60041
.[5] Itô’s stochastic calculus and Heisenberg commutation relations. Stochastic Process. Appl. 120 (5) (2010) 698–720. | MR 2603060 | Zbl 1194.60035
.[6] Operator Algebras and Quantum Statistical Mechanics 1 2002. | MR 887100 | Zbl 0903.46066
and .[7] Operator Algebras and Quantum Statistical Mechanics 2. Equilibrium States. Models in Quantum Statistical Mechanics, second printing of the second edition. Springer, Berlin, 2002. | MR 1441540 | Zbl 0903.46066
and .[8] Probability and geometry on some noncommutative manifolds. J. Operator Theory 49 (1) (2003) 185–201. | MR 1978329 | Zbl 1030.46102
, and .[9] Higher order Itô product formula and generators of evolutions and flows. Internat. J. Theoret. Phys. 34 (8) (1995) 1481–1486. | MR 1353690 | Zbl 0850.81035
, and .[10] -Algebras by Example. Fields Institute Monographs 6. Amer. Math. Soc., Providence, RI, 1996. | MR 1402012 | Zbl 0958.46029
.[11] Quantum Markov semigroups and quantum flows. Proyecciones 18 (3) (1999). 1–144. | MR 1814506 | Zbl 1255.81185
.[12] Quantum flows with unbounded structure maps and finite degrees of freedom. J. London Math. Soc. (2) 48 (3) (1993) 537–551. | MR 1241787 | Zbl 0791.60053
and .[13] Sufficient condition for the existence of invariant states for the asymmetric exclusion QMS. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 (2) (2011) 337–343. | MR 2813493 | Zbl 1228.46064
, and .[14] The asymmetric exclusion quantum Markov semigroup. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (3) (2009) 367–385. | MR 2572461 | Zbl 1186.46071
and .[15] Dilation of a class of quantum dynamical semigroups with unbounded generators on UHF algebras. Ann. Inst. H. Poincaré Probab. Statist. 41 (3) (2005) 505–522. | Numdam | MR 2139031 | Zbl 1072.81038
, and .[16] Quantum Ito’s formula and stochastic evolutions. Comm. Math. Phys. 93 (3) (1984) 301–323. | MR 745686 | Zbl 0546.60058
and .[17] Chaotic expansion of elements of the universal enveloping algebra of a Lie algebra associated with a quantum stochastic calculus. Proc. London Math. Soc. (3) 77 (2) (1998) 462–480. | MR 1635169 | Zbl 0904.60084
and .[18] Quantum diffusions and the noncommutative torus. Lett. Math. Phys. 15 (1) (1988) 47–53. | MR 929786 | Zbl 0644.46047
and .[19] Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin, 1999. | MR 1717346 | Zbl 0949.60006
.[20] Quantum stochastic analysis – An introduction. In Quantum Independent Increment Processes I 181–271. M. Schürmann and U. Franz (Eds). Lecture Notes in Mathematics 1865. Springer, Berlin, 2005. | MR 2132095 | Zbl 1072.81039
.[21] Existence, positivity and contractivity for quantum stochastic flows with infinite dimensional noise. Probab. Theory Related Fields 116 (4) (2000) 505–543. | MR 1757598 | Zbl 1079.81542
and .[22] Markovian cocycles on operator algebras adapted to a Fock filtration. J. Funct. Anal. 178 (2) (2000) 269–305. | MR 1802896 | Zbl 0969.60066
and .[23] Existence of Feller cocycles on a -algebra. Bull. London Math. Soc. 33 (5) (2001) 613–621. | MR 1844560 | Zbl 1032.46088
and .[24] Homomorphic Feller cocycles on a -algebra. J. London Math. Soc. (2) 68 (1) (2003) 255–272. | MR 1980256 | Zbl 1033.46049
and .[25] Quantum stochastic cocycles and completely bounded semigroups on operator spaces. Int. Math. Res. Not. IMRN. To appear, 2014. DOI:10.1093/imrn/rnt001. | MR 3214316 | Zbl 06382340
and .[26] Quantum Probability for Probabilists, 2nd edition. Lecture Notes in Mathematics 1538. Springer, Berlin, 1995. | MR 1222649 | Zbl 0877.60079
.[27] Markov chains as Evan–Hudson diffusions in Fock space. In Séminaire de Probabilités XXIV 362–369. J. Azéma, P.-A. Meyer and M. Yor (Eds). Lecture Notes in Mathematics 1426. Springer, Berlin, 1990. | Numdam | MR 1071552 | Zbl 0699.60065
and .[28] Decoherence of quantum Markov semigroups. Ann. Inst. H. Poincaré Probab. Statist. 41 (3) (2005) 349–373. | Numdam | MR 2139024 | Zbl 1075.81040
.[29] Quantum diffusions on the rotation algebras and the quantum Hall effect326–333. L. Accardi and W. von Waldenfels (Eds). Lecture Notes in Mathematics 1442. Springer, Berlin, 1990. | MR 1091318 | Zbl 0717.46059
.[30] Quantum Stochastic Processes and Noncommutative Geometry. Cambridge Univ. Press, Cambridge, 2007. | MR 2299106 | Zbl 1144.81002
and .