Nous considérons des marches aléatoires biaisées sur deux arbres de Galton–Watson sans feuilles et ayant des lois de reproduction respectivement et , deux lois supportées par les entiers positifs telles que domine stochastiquement . Nous prouvons que la vitesse de la marche sur est supérieure ou égale á celle sur si le biais est plus grand qu’un seuil dépendant de et . Ceci répond partiellement á une question posée par Ben Arous, Fribergh et Sidoravicius (Comm. Pure Appl. Math. 67 (2014) 519–530).
Consider biased random walks on two Galton–Watson trees without leaves having progeny distributions and ( and ) where and are supported on positive integers and dominates stochastically. We prove that the speed of the walk on is bigger than the same on when the bias is larger than a threshold depending on and . This partially answers a question raised by Ben Arous, Fribergh and Sidoravicius (Comm. Pure Appl. Math. 67 (2014) 519–530).
@article{AIHPB_2015__51_1_304_0, author = {Mehrdad, Behzad and Sen, Sanchayan and Zhu, Lingjiong}, title = {The speed of a biased walk on a Galton--Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {304-318}, doi = {10.1214/13-AIHP573}, mrnumber = {3300972}, zbl = {06412906}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_1_304_0} }
Mehrdad, Behzad; Sen, Sanchayan; Zhu, Lingjiong. The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 304-318. doi : 10.1214/13-AIHP573. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_1_304_0/
[1] Speed of the biased random walk on a Galton–Watson tree. Probab. Theory Related Fields. To appear, 2014. DOI:10.1007/s00440-013-0515-y. | MR 3230003 | Zbl 06330940
.[2] Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4 (1994) 779–790. | MR 1284985 | Zbl 0806.60068
.[3] Lyons–Pemantle–Peres monotonicity problem for high biases. Comm Pure Appl. Math. 67 (2014) 519–530. | MR 3168120 | Zbl 1294.05143
, and .[4] On the limit of a supercritical branching process. J. Appl. Probab. 25 (1988) 215–228. | MR 974583 | Zbl 0669.60078
.[5] A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37 (1966) 1211–1223. | MR 198552 | Zbl 0203.17401
and .[6] Random walks and percolation on trees. Ann. Probab. 18 (1990) 931–958. | MR 1062053 | Zbl 0714.60089
.[7] Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Erg. Theory Dynam. Syst. 15 (1995) 593–619. | MR 1336708 | Zbl 0819.60077
, and .[8] Biased random walks on Galton–Watson trees. Probab. Theory Related Fields 106 (1996) 254–268. | MR 1410689 | Zbl 0859.60076
, and .[9] Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab. 23 (1995) 1125–1138. | MR 1349164 | Zbl 0840.60077
, and .[10] Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189–312. Springer, Berlin, 2004. | MR 2071631 | Zbl 1060.60103
.