On s’intéresse au polynôme caractéristique moyen associé à des variables aléatoires réelles qui forment un Ensemble Biorthogonal, c’est-à-dire un processus ponctuel déterminantal associé à un opérateur de projection borné et de rang fini. Pour une sous-classe d’Ensembles Biorthogonaux, qui contient les Ensembles Polynômes Orthogonaux et les Ensembles Polynômes Orthogonaux Multiples (de type mixte), nous obtenons une condition suffisante pour que, presque sûrement, la distribution limite de ses zéros coincide avec la distribution limite des variables aléatoires, quand tend vers l’infini. De plus, cette condition s’avère être également suffisante pour améliorer la convergence en moyenne en convergence presque sûre pour les moments de la mesure empirique associée au processus ponctuel déterminantal. En application, on obtient avec des théorèmes de Voiculescu une description pour les distributions limites des zéros des polynômes d’Hermite et de Laguerre multiples, en termes de convolutions libres de lois classiques avec des mesures atomiques, ainsi que des équations algébriques explicites pour leurs transformées de Cauchy–Stieltjes.
We investigate the average characteristic polynomial where the ’s are real random variables drawn from a Biorthogonal Ensemble, i.e. a determinantal point process associated with a bounded finite-rank projection operator. For a subclass of Biorthogonal Ensembles, which contains Orthogonal Polynomial Ensembles and (mixed-type) Multiple Orthogonal Polynomial Ensembles, we provide a sufficient condition for its limiting zero distribution to match with the limiting distribution of the random variables, almost surely, as goes to infinity. Moreover, such a condition turns out to be sufficient to strengthen the mean convergence to the almost sure one for the moments of the empirical measure associated to the determinantal point process, a fact of independent interest. As an application, we obtain from Voiculescu’s theorems the limiting zero distribution for multiple Hermite and multiple Laguerre polynomials, expressed in terms of free convolutions of classical distributions with atomic measures, and then derive explicit algebraic equations for their Cauchy–Stieltjes transform.
@article{AIHPB_2015__51_1_283_0, author = {Hardy, Adrien}, title = {Average characteristic polynomials of determinantal point processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {283-303}, doi = {10.1214/13-AIHP572}, mrnumber = {3300971}, zbl = {06412905}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_1_283_0} }
Hardy, Adrien. Average characteristic polynomials of determinantal point processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 283-303. doi : 10.1214/13-AIHP572. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_1_283_0/
[1] An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2010. | MR 2760897 | Zbl 1184.15023
, and .[2] A law of large numbers for finite-range dependent random matrices. Comm. Pure Appl. Math. 61 (2008) 1118–1154. | MR 2417889 | Zbl 1189.60018
and .[3] Some discrete multiple orthogonal polynomials. J. Comput. Appl. Math. 153 (2003) 19–45. | MR 1985676 | Zbl 1021.33006
, and .[4] Multiple orthogonal polynomials for classical weights. Trans. Amer. Math. Soc. 355 (2003) 3887–3914. | MR 1990569 | Zbl 1033.33002
, and .[5] Multiple Meixner–Pollaczek polynomials and the six-vertex model. J. Approx. Theory 163 (2011) 1606–1637. | MR 2832722 | Zbl 1227.82013
, and .[6] Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42 (1993) 733–773. | MR 1254116 | Zbl 0806.46070
and .[7] On the free convolution with a semi-circular distribution. Indiana Univ. Math. J. 46 (1997) 705–718. | MR 1488333 | Zbl 0904.46045
.[8] Random matrix model with external source and a constrained vector equilibrium problem. Comm. Pure Appl. Math. 64 (1) (2011) 116–160. | MR 2743878 | Zbl 1206.60007
, and .[9] Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. 3 (2004) 109–129. | MR 2038771 | Zbl 1082.15035
and .[10] Integral representations for multiple Hermite and multiple Laguerre polynomials. Ann. Inst. Fourier (Grenoble) 55 (2005) 2001–2014. | Numdam | MR 2187942 | Zbl 1084.33008
and .[11] Biorthogonal ensembles. Nuclear Phys. B 536 (3) (1999) 704–732. | MR 1663328 | Zbl 0948.82018
.[12] The Nevai condition and a local law of large numbers for orthogonal polynomial ensembles. Manuscript, 2013. Available at arXiv:1301.2061. | MR 3255467 | Zbl 06341114
and .[13] Some classical multiple orthogonal polynomials. J. Comput. Appl. Math. 127 (2001) 317–347. | MR 1808581 | Zbl 0969.33005
and .[14] Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions. J. Approx. Theory 146 (2007) 91–114. | MR 2327475 | Zbl 1135.42324
and .[15] Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics 3. Amer. Math. Soc., Providence, RI, 1999. | MR 1677884 | Zbl 0997.47033
.[16] Average characteristic polynomials for multiple orthogonal polynomial ensembles. J. Approx. Theory 162 (2010) 1033–1067. | MR 2610344 | Zbl 1202.42047
.[17] A note on biorthogonal ensembles. J. Approx. Theory 152 (2) (2008) 167–187. | MR 2422147 | Zbl 1149.42014
and .[18] A vector equilibrium problem for the two-matrix model in the quartic/quadratic case. Nonlinearity 24 (2011) 951–993. | MR 2772631 | Zbl 1211.31006
, and .[19] Universality in the two matrix model: A Riemann–Hilbert steepest descent analysis. Comm. Pure Appl. Math. 62 (2009) 1076–1153. | MR 2531553 | Zbl 1221.15052
and .[20] The Hermitian two-matrix model with an even quartic potential. Memoirs Amer. Math. Soc. 217 (1022) (2012) 1–105. | MR 2934329 | Zbl 1247.15032
, and .[21] Asymptotic analysis of the two matrix model with a quartic potential. In Proceedings of the MSRI Semester “Random Matrix Theory, Interacting Particle Systems and Integrable Systems.” To appear. Available at arXiv:1210.0097. | MR 3380685
, and .[22] The polynomial method for random matrices. Found. Comput. Math. 8 (2008) 649–702. | MR 2461243 | Zbl 1171.15024
and .[23] Riemann–Hilbert problems for multiple orthogonal polynomials. In NATO ASI Special Functions 2000. Current Perspective and Future Directions 23–59. J. Bustoz, M. E. H. Ismail and S. K. Suslov (Eds). Nato Science Series II 30. Kluwer Academic Publishers, Dordrecht, 2001. | MR 2006283 | Zbl 0997.42012
, and .[24] Traces and Determinants of Linear Operators. Birkhäuser, Basel, 2000. | MR 1744872 | Zbl 0946.47013
, and .[25] Large deviations for a non-centered Wishart matrix. Random Matrices Theory Appl. 2 (1) (2013) 1250016. | MR 3039821 | Zbl 1271.60015
and .[26] Determinantal processes and independence. Probab. Surveys 3 (2006) 206–229. | MR 2216966 | Zbl 1189.60101
, , and .[27] Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications 98. Cambridge Univ. Press, Cambridge, 2005. | MR 2191786 | Zbl 1082.42016
.[28] Random matrices and determinantal processes. In Mathematical Statistical Physics: Lecture Notes of the Les Houches Summer School 2005 1–55. Bovier et al. (Eds.). Elsevier, Amsterdam, 2006. | MR 2581882 | Zbl 05723794
.[29] Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437–476. | MR 1737991 | Zbl 0969.15008
.[30] Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153 (2001) 259–296. | MR 1826414 | Zbl 0984.15020
.[31] Orthogonal polynomial ensembles in probability theory. Probab. Surveys 2 (2005) 385–447. | MR 2203677 | Zbl 1189.60024
.[32] Multiple orthogonal polynomial ensembles. In Recent Trends in Orthogonal Polynomials and Approximation Theory 155–176. Contemp. Math. 507. Amer. Math. Soc., Providence, RI, 2010. | MR 2647568 | Zbl 1218.60005
.[33] Multiple orthogonal polynomials in random matrix theory. In Proceedings of the International Congress of Mathematicians III 1417–1432. Hindustan Book Agency, New Delhi, 2010. | MR 2827849 | Zbl 1230.42034
.[34] A Riemann–Hilbert problem for biorthogonal polynomials. J. Comput. Appl. Math. 178 (2005) 313–320. | MR 2127887 | Zbl 1096.42009
and .[35] Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights. Comm. Math. Phys. 286 (2009) 217–275. | MR 2470930 | Zbl 1188.60018
, and .[36] Recurrence relations and vector equilibrium problems arising from a model of non-intersecting squared Bessel paths. J. Approx. Theory 162 (2010) 2048–2077. | MR 2732921 | Zbl 1210.33018
and .[37] Strong asymptotics for multiple Laguerre polynomials. Constr. Approx. 28 (2008) 61–111. | MR 2357986 | Zbl 1173.30023
and .[38] Random matrix models with additional interactions. J. Phys. A 28 (1995) L159–164. | MR 1327636
.[39] Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs 171. Amer. Math. Soc., Providence, RI, 2011. | MR 2808038 | Zbl 1244.15002
and .[40] Orthogonal polynomials. Mem. Amer. Math. Soc. 213 (1979). | MR 519926 | Zbl 0405.33009
.[41] Weak convergence of CD kernels and applications. Duke Math. J. 146 (2009) 305–330. | MR 2477763 | Zbl 1158.33003
.[42] Determinantal random point fields. Russian Math. Surveys 55 (2000) 923–975. | MR 1799012 | Zbl 0991.60038
.[43] Eigenvalues of Toeplitz matrices associated with orthogonal polynomials. J. Approx. Theory 51 (1987) 360–371. | MR 915962 | Zbl 0634.33017
.[44] Multiple orthogonal polynomials, irrationality and transcendence. In Continued Fractions: From Analytic Number Theory to Constructive Approximation (Columbia, MO, 1998) 325–342. Contemp. Math. 236. Amer. Math. Soc., Providence, RI, 1999. | MR 1665377 | Zbl 0952.42014
.[45] Nearest neighbor recurrence relations for multiple orthogonal polynomials. J. Approx. Theory 163 (2011) 1427–1448. | MR 2832734 | Zbl 1231.33014
.[46] Free Random Variables. CRM Monographs Series 1. Amer. Math. Soc., Providence, RI, 1992. | MR 1217253 | Zbl 0795.46049
, and .