Dans cet article, nous obtenons des taux de convergence pour les vecteurs de densité dans le modèle de Curie–Weiss–Potts via la méthode de Stein des paires échangeables. Nos résultats incluent des bornes de Kolmogorov pour l’approximation normale multivariée dans tout le domaine et , où est l’inverse de la température et un champ extérieur. Dans ce modèle, la ligne critique est explicitement connue et correspond à une transition du premier ordre. Nous incluons des taux de convergence pour des approximations non-gaussiennes au bord de la ligne critique du modèle.
In the present paper we obtain rates of convergence for the limit theorems of the density vector in the Curie–Weiss–Potts model via Stein’s Method of exchangeable pairs. Our results include Kolmogorov bounds for multivariate normal approximation in the whole domain and , where is the inverse temperature and an exterior field. In this model, the critical line is explicitly known and corresponds to a first order transition. We include rates of convergence for non-Gaussian approximations at the extremity of the critical line of the model.
@article{AIHPB_2015__51_1_252_0, author = {Eichelsbacher, Peter and Martschink, Bastian}, title = {On rates of convergence in the Curie--Weiss--Potts model with an external field}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {252-282}, doi = {10.1214/14-AIHP599}, mrnumber = {3300970}, zbl = {06412904}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_1_252_0} }
Eichelsbacher, Peter; Martschink, Bastian. On rates of convergence in the Curie–Weiss–Potts model with an external field. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 252-282. doi : 10.1214/14-AIHP599. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_1_252_0/
[1] Stein’s method for diffusion approximations. Probab. Theory Related Fields 84 (3) (1990) 297–322. | MR 1035659 | Zbl 0665.60008
.[2] An exposition of Götze’s estimation of the rate of convergence in the multivariate central limit theorem, 2010. Available at arXiv:1003.4254.
and .[3] Mean-field driven first-order phase transitions in systems with long-range interactions. J. Stat. Phys. 122 (6) (2006) 1139–1193. | MR 2219531 | Zbl 1142.82329
, and .[4] Thermodynamic vs topological phase transition: Cusp in the Kertéz line. Europhys. Lett. 82 (2008) 1–5.
, , and .[5] Exchangeable pairs and Poisson approximation. Probab. Surv. 2 (2005) 64–106 (electronic). | MR 2121796 | Zbl 1189.60072
, and .[6] Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008) 257–283. | MR 2453473 | Zbl 1162.60310
and .[7] Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. Ann. Appl. Probab. 21 (2) (2011) 464–483. | MR 2807964 | Zbl 1216.60018
and .[8] Multiple critical behavior of probabilistic limit theorems in the neighborhood of a tricritical point. J. Stat. Phys. 127 (3) (2007) 495–552. | MR 2316196 | Zbl 1156.82006
, and .[9] Complete analysis of phase transitions and ensemble equivalence for the Curie–Weiss–Potts model. J. Math. Phys. 46 (6) (2005) 063301. | MR 2149837 | Zbl 1110.82021
, and .[10] Large Deviations Techniques and Applications. Springer, New York, 1998. | MR 1619036 | Zbl 0896.60013
and .[11] Stein’s method for dependent variables occurring in statistical mechanics. Electron. J. Probab. 15 (30) (2010) 962–988. | MR 2659754 | Zbl 1225.60042
and .[12] Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101 (5–6) (2000) 999–1064. | MR 1806714 | Zbl 0989.82004
, and .[13] Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44 (2) (1978) 117–139. | MR 503333 | Zbl 0364.60120
and .[14] Limit theorems for the empirical vector of the Curie–Weiss–Potts model. Stochastic Process. Appl. 35 (1) (1990) 59–79. | MR 1062583 | Zbl 0705.60027
and .[15] Limit theorems for maximum likelihood estimators in the Curie–Weiss–Potts model. Stochastic Process. Appl. 40 (2) (1992) 251–288. | MR 1158026 | Zbl 0763.62012
and .[16] Limit theorems and coexistence probabilities for the Curie–Weiss Potts model with an external field. Stochastic Process. Appl. 120 (1) (2010) 84–104. | MR 2565853 | Zbl 1181.60031
, and .[17] On the rate of convergence in the multivariate CLT. Ann. Probab. 19 (2) (1991) 724–739. | MR 1106283 | Zbl 0729.62051
.[18] Potts model in the many–component limit. J. Phys. A 13 (1980) 2143–2148.
and .[19] Behavior in large dimensions of the Potts and Heisenberg models. Rev. Math. Phys. 1 (2–3) (1989) 147–182. | MR 1070088 | Zbl 0717.60111
and .[20] Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab. 37 (6) (2009) 2150–2173. | MR 2573554 | Zbl 1200.62010
and .[21] A multivariate CLT for local dependence with rate and applications to multivariate graph related statistics. J. Multivariate Anal. 56 (2) (1996) 333–350. | MR 1379533 | Zbl 0859.60019
and .[22] On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted -statistics. Ann. Appl. Probab. 7 (4) (1997) 1080–1105. | MR 1484798 | Zbl 0890.60019
and .[23] The field theory as a classical Ising model. Comm. Math. Phys. 33 (1973) 145–164. | MR 428998
and .[24] A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory (Berkeley, Calif.) 583–602. Univ. California Press, Berkeley, 1972. | MR 402873 | Zbl 0278.60026
.[25] Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series 7. IMS, Hayward, CA, 1986. | MR 882007 | Zbl 0721.60016
.[26] Use of exchangeable pairs in the analysis of simulations. In Stein’s Method: Expository Lectures and Applications 1–26. IMS Lecture Notes Monogr. Ser. 46. IMS, Beachwood, OH, 2004. | MR 2118600 | Zbl 1079.62024
, , and .[27] Solutions of the variational problem in the Curie–Weiss–Potts model. Stochastic Process. Appl. 50 (2) (1994) 245–252. | MR 1273773 | Zbl 0796.60027
.[28] The Potts model. Rev. Modern Phys. 54 (1) (1982) 235–268. | MR 641370
.