Nous prouvons qu’une variable aléatoire , où est un processus a une queue qui décroît comme . La distribution de est une distribution universelle qui gouverne la position du point final d’un polymère dirigé en dimension à temps grand ou à grande température.
We prove that the random variable , where is the process, has tails which decay like . The distribution of is a universal distribution which governs the rescaled endpoint of directed polymers in dimensions for large time or temperature.
@article{AIHPB_2015__51_1_1_0, author = {Quastel, Jeremy and Remenik, Daniel}, title = {Tails of the endpoint distribution of directed polymers}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {51}, year = {2015}, pages = {1-17}, doi = {10.1214/12-AIHP525}, mrnumber = {3300961}, zbl = {06412895}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2015__51_1_1_0} }
Quastel, Jeremy; Remenik, Daniel. Tails of the endpoint distribution of directed polymers. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) pp. 1-17. doi : 10.1214/12-AIHP525. http://gdmltest.u-ga.fr/item/AIHPB_2015__51_1_1_0/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. U.S. Government Printing Office, Washington, DC, 1964. | MR 167642 | Zbl 0643.33001
and .[2] Asymptotics of Tracy–Widom distributions and the total integral of a Painlevé II function. Comm. Math. Phys. 280 (2) (2008) 463–497. | MR 2395479 | Zbl 1221.33032
, and .[3] On the joint distribution of the maximum and its position of the process minus a parabola. J. Math. Phys. 53 (8) (2012) 1–13. | MR 3012644 | Zbl 1278.82070
, and .[4] Symmetrized random permutations. In Random Matrix Models and Their Applications. Math. Sci. Res. Inst. Publ. 40 1–19. Cambridge Univ. Press, Cambridge, 2001. | MR 1842780 | Zbl 0989.60010
and .[5] Transition between and processes and TASEP fluctuations. Comm. Pure Appl. Math. 61 (11) (2008) 1603–1629. | MR 2444377 | Zbl 1214.82062
, and .[6] Continuum statistics of the process. Comm. Math. Phys. 317 (2) (2013) 347–362. | MR 3010187 | Zbl 1257.82112
, and .[7] Brownian Gibbs property for Airy line ensembles. Invent. Math. 195 (2) (2014) 441–508. | MR 3152753 | Zbl 06261669
and .[8] A determinantal formula for the GOE Tracy–Widom distribution. J. Phys. A 38 (33) (2005) L557–L561. | MR 2165698
and .[9] Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nuclear Phys. B 553 (3) (1999) 601–643. | MR 1707162 | Zbl 0944.82012
, and .[10] Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 (1989) 79–109. | MR 981568
.[11] Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254 (4–6) (1995) 215–414.
and .[12] Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (1–2) (2003) 277–329. | MR 2018275 | Zbl 1031.60084
.[13] Universal parametric correlations at the soft edge of the spectrum of random matrix ensembles. Europhys. Lett. 26 (9) (1994) 641.
.[14] A variational approach to directed polymers. J. Phys. A 25 (17) (1992) 4521–4534. | MR 1181608 | Zbl 0764.60115
and .[15] Endpoint distribution of directed polymers in dimensions. Comm. Math. Phys. 317 (2) (2013) 363–380. | MR 3010188 | Zbl 1257.82117
, and .[16] Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108 (5–6) (2002) 1071–1106. | MR 1933446 | Zbl 1025.82010
and .[17] The one-dimensional KPZ equation and the Airy process. J. Stat. Mech. Theory Exp. 2011 (03) (2011) 1–15. | MR 2801168
and .[18] Local behavior and hitting probabilities of the process. Probab. Theory Related Fields 157 (3–4) (2013) 605–634. | MR 3129799 | Zbl 1285.60095
and .[19] Supremum of the process minus a parabola on a half line. J. Stat. Phys. 150 (3) (2013) 442–456. | MR 3024136 | Zbl 1263.82045
and .[20] Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A Math. Gen. 38 (33) (2005) L549–L556. | MR 2165697
.[21] Extremes of vicious walkers for large : Application to the directed polymer and KPZ interfaces. J. Stat. Phys. 149 (3) (2012) 385–410. | MR 2992794 | Zbl 1259.82146
.[22] Trace Ideals and Their Applications, 2nd edition. Mathematical Surveys and Monographs 120. Amer. Math. Soc., Providence, RI, 2005. | MR 2154153 | Zbl 1074.47001
.[23] Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1) (1994) 151–174. | MR 1257246 | Zbl 0789.35152
and .[24] On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 (3) (1996) 727–754. | MR 1385083 | Zbl 0851.60101
and .[25] On asymptotics for the Airy process. J. Stat. Phys. 115 (3–4) (2004) 1129–1134. | MR 2054175 | Zbl 1073.82033
.