En 1992, Speicher a montré que les mesures de probabilités jouant le rôle des lois gaussiennes dans les différentes théories des probabilités non-commutatives (probabilités fermioniques, probabilités libres à la Voiculescu, probabilités -déformées à la Bożejko et Speicher) apparaissent toutes comme limites d’un Théorème de la limite centrale généralisé. Ceci concerne des suites de variables aléatoires non-commutatives (éléments d’une -algèbre munie d’un état) choisies dans un ensemble d’éléments qui commutent ou anti-commutent deux-à-deux, avec les distributions limites respectives déterminées par la valeur moyenne des coefficients de commutation. Dans ce papier, nous dérivons une forme plus générale du Théorème de la limite centrale où les coefficients de commutation deux-à-deux sont des nombres réels arbitraires. Les statistiques gaussiennes classiques dépendent maintenant d’un second paramètre comme résultat du contrôle du premier et du second moment des coefficients de commutation. Une application donne le modèle de matrices aléatoires pour les statistiques -gaussiennes, pour lesquelles il a été montré récemment qu’elles ont des profondes connexions avec les algèbres d’opérateurs, les fonctions spéciales, les polynômes orthogonaux, la physique mathématique et la théorie des matrices aléatoires.
In 1992, Speicher showed the fundamental fact that the probability measures playing the role of the classical Gaussian in the various non-commutative probability theories (viz. fermionic probability, Voiculescu’s free probability, and -deformed probability of Bożejko and Speicher) all arise as the limits in a generalized Central Limit Theorem. The latter concerns sequences of non-commutative random variables (elements of a -algebra equipped with a state) drawn from an ensemble of pair-wise commuting or anti-commuting elements, with the respective limiting distributions determined by the average value of the commutation coefficients. In this paper, we derive a more general form of the Central Limit Theorem in which the pair-wise commutation coefficients are arbitrary real numbers. The classical Gaussian statistics now undergo a second-parameter refinement as a result of controlling for the first and the second moments of the commutation coefficients. An application yields the random matrix models for the -Gaussian statistics, which were recently shown to have rich connections to operator algebras, special functions, orthogonal polynomials, mathematical physics, and random matrix theory.
@article{AIHPB_2014__50_4_1456_0, author = {Blitvi\'c, Natasha}, title = {Two-parameter non-commutative Central Limit Theorem}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {1456-1473}, doi = {10.1214/13-AIHP550}, mrnumber = {3270001}, zbl = {06377561}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1456_0} }
Blitvić, Natasha. Two-parameter non-commutative Central Limit Theorem. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1456-1473. doi : 10.1214/13-AIHP550. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1456_0/
[1] Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 17 (1976) 524-527. | MR 495971 | Zbl 0941.81549
and .[2] Free hypercontractivity. Comm. Math. Phys. 184 (1997) 457-474. | MR 1462754 | Zbl 0874.46049
.[3] Free probability for probabilists. In Quantum Probability Communications, Vol. XI (Grenoble, 1998), QP-PQ, XI 55-71. World Sci. Publ., River Edge, NJ, 2003. | MR 2032363 | Zbl 1105.46045
.[4] The quantum group and a -analogue of the boson operators. J. Phys. A 22 (1989) L873-L878. | MR 1015226 | Zbl 0708.17015
.[5] The -Gaussian process. J. Funct. Anal. 10 (2012) 3270-3305. | MR 2973341 | Zbl 1264.46045
.[6] -Gaussian processes: Non-commutative and classical aspects. Comm. Math. Phys. 185 (1997) 129-154. | MR 1463036 | Zbl 0873.60087
, and .[7] An example of a generalized Brownian motion. Comm. Math. Phys. 137 (1991) 519-531. | MR 1105428 | Zbl 0722.60033
and .[8] Generalized -deformed Gaussian random variables. In Quantum Probability 127-140. Banach Center Publ. 73. Polish Acad. Sci. Inst. Math., Warsaw, 2006. | MR 2423121 | Zbl 1109.46053
and .[9] Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities. Comm. Math. Phys. 155 (1993) 27-46. | MR 1228524 | Zbl 0796.46054
and .[10] A -oscillator realization of two-parameter quantum algebras. J. Phys. A 24 (1991) L711-L718. | MR 1116019 | Zbl 0735.17026
and .[11] Crossings and nestings of matchings and partitions. Trans. Amer. Math. Soc. 359 (2007) 1555-1575 (electronic). | MR 2272140 | Zbl 1108.05012
, , , and .[12] Parastochastics. J. Math. Phys. 11 (1970) 364-390. | MR 260352 | Zbl 0187.25902
and .[13] Asymptotics of -orthogonal polynomials and a -Airy function. Int. Math. Res. Not. 2005 (2005) 1063-1088. | MR 2149641 | Zbl 1072.33014
.[14] Transformation functions in the complex domain. Progr. Theoret. Phys. 6 (1951) 524-528. | MR 44601
.[15] Distribution of crossings, nestings and alignments of two edges in matchings and partitions. Electron. J. Combin. 13 (2006) Research Paper 33, 12 pp. (electronic). | MR 2212506 | Zbl 1096.05006
and .[16] Hypercontractivity in non-commutative holomorphic spaces. Comm. Math. Phys. 259 (2005) 615-637. | MR 2174419 | Zbl 1100.46035
.[17] Products of random matrices and -catalan numbers. Preprint, 2001. Available at arXiv:math/0104074v2 [math.CO].
.[18] On identities concerning the numbers of crossings and nestings of two edges in matchings. SIAM J. Discrete Math. 20 (2006) 960-976. | MR 2272241 | Zbl 1135.05006
.[19] On -analogues of the quantum harmonic oscillator and the quantum group . J. Phys. A 22 (1989) 4581. | MR 1022133 | Zbl 0722.17009
.[20] Products of correlated symmetric matrices and -Catalan numbers. Probab. Theory Related Fields 124 (2002) 574-594. | MR 1942324 | Zbl 1020.15025
and .[21] Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. | MR 2266879 | Zbl 1133.60003
and .[22] A noncommutative central limit theorem. Math. Z. 209 (1992) 55-66. | MR 1143213 | Zbl 0724.60023
.[23] Addition of certain noncommuting random variables. J. Funct. Anal. 66 (1986) 323-346. | MR 839105 | Zbl 0651.46063
.[24] Free Random Variables. CRM Monograph Series 1. American Mathematical Society, Providence, RI, 1992. | MR 1217253 | Zbl 0795.46049
, and .