Nous construisons des solutions stationnaires de certaines équations différentielles stochastiques libres à coefficients opérateurs non-bornés. Comme application, nous montrons l’égalité des dimensions entropiques libres microcanonique et non-microcanonique sous l’hypothèse d’une variable conjuguée Lipschitz pour les générateurs d’un espace de probabilité non-commutatif inscriptible dans une ultrapuissance du facteur hyperfini. Cette hypothèse de variable conjuguée Lipschitz inclut le cas de variables aléatories -Gaussiennes pour de petits par exemple .
We get stationary solutions of a free stochastic partial differential equation. As an application, we prove equality of non-microstate and microstate free entropy dimensions under a Lipschitz like condition on conjugate variables, assuming also the von Neumann algebra embeddable. This includes an -tuple of -Gaussian random variables e.g. for .
@article{AIHPB_2014__50_4_1404_0, author = {Dabrowski, Yoann}, title = {A free stochastic partial differential equation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {1404-1455}, doi = {10.1214/13-AIHP548}, mrnumber = {3270000}, zbl = {06377560}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1404_0} }
Dabrowski, Yoann. A free stochastic partial differential equation. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1404-1455. doi : 10.1214/13-AIHP548. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1404_0/
[1] Strong solidity of the -Gaussian algebras for all . Available at arXiv:1110.4918.
.[2] Large deviation bounds for matrix Brownian motion. Invent. Math. 152 (2003) 433-459. | MR 1975007 | Zbl 1017.60026
, and .[3] Stochastic calculus with respect to free Brownian motion. Probab. Theory Related Fields 112 (1998) 373-409. | MR 1660906 | Zbl 0919.60056
and .[4] A free probability analogue of the Wasserstein metric on the trace-state space. Geom. Func. Anal. 11 (2001) 1125-1138. | MR 1878316 | Zbl 1020.46020
and .[5] Ultracontractivity and strong Sobolev inequality for -Ornstein-Uhlenbeck semigroup (). Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1998) 203-220. | MR 1811255 | Zbl 1071.47510
.[6] -Gaussian processes: Non-commutative and classical aspects. Commun. Math. Phys. 185 (1997) 129-154. | MR 1463036 | Zbl 0873.60087
, and .[7] An example of a generalized Brownian motion. Commun. Math. Phys. 137 (1991) 519-531. | MR 1105428 | Zbl 0722.60033
and .[8] Sufficient conditions for conservativity of minimal quantum dynamical semigroups. J. Funct. Anal. 153 (1998) 382-404. | MR 1614586 | Zbl 0914.47040
and .[9] Derivations as square roots of Dirichlet forms. J. Funct. Anal. 201 (2003) 78-120. | MR 1986156 | Zbl 1032.46084
and .[10] -homology for von Neumann algebras. J. Reine Angew. Math. 586 (2005) 125-168. | MR 2180603 | Zbl 1083.46034
and .[11] A note about proving non- under a finite non-microstates free Fisher information Assumption. J. Funct. Anal. 258 (2008) 3662-3674. | MR 2606868 | Zbl 1197.46035
.[12] A non-commutative path space approach to stationary free stochastic differential equations. Preprint, 2010, available at arXiv:1006.4351. | MR 2606868
.[13] Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. | MR 1207136 | Zbl pre06315262
and .[14] Non-commutative symmetric Markov semigroups. Math. Z. 210 (1992) 379-411. | Zbl 0761.46051
and .[15] Stochastic integration with respect to Brownian motion. Probab. Theory Related Fields 125 (2003) 77-95. | MR 1952458 | Zbl 1033.60066
.[16] On the Fock representation of the -commutation relations. J. Reine Angew. Math. 440 (1993) 201-212. | MR 1225964 | Zbl 0767.46038
and .[17] H-P quantum stochastic differential equations. In Non-Commutativity, Infinite-Dimensionality, and Probability at the Crossroads. The Proceedings of the RIMS Workshop on Infinite Dimensional Analysis and Quantum Probability: Kyoto, Japan, 20-22 November, 2001 51-96. N. Obata, T. Matsui and A. Hora (Eds). World Scientific, River Edge, NJ, 2002. | MR 2059857 | Zbl 1046.81067
.[18] Mild solutions of quantum stochastic differential equations. Electron. Commun. Probab. 5 (2000) 158-171. | MR 1800118 | Zbl 0967.60064
and .[19] Free diffusions and matrix models with strictly convex interaction. Geom. Func. Anal. 18 (2007) 1875-1916. | MR 2491694 | Zbl 1187.46056
and .[20] Perturbation Theory for Linear Operators, 2nd edition. Springer-Verlag, Berlin, 1980. | Zbl 0435.47001
.[21] Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations. Springer, Berlin, 2007. | MR 2370567 | Zbl 1159.60004
.[22] An analytic approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives. R. A. Carmona and B. L. Rozovskii (Eds). Mathematical Surveys and Monographs 64. American Mathetical Society, Providence, 1999. | MR 1661766 | Zbl 0933.60073
.[23] Stochastic evolution equations (in Russian). Current Problems in Mathematics 14 (1979) 71-147. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow. | MR 570795 | Zbl 0436.60047
and .[24] Continuous Time Markov Processes: An Introduction. American Mathetical Society, Providence, 2010. | MR 2574430 | Zbl 1205.60002
.[25] -Invariants: Theory and Applications to Geometry and K-Theory. Springer, Berlin, 2002. | Zbl 1009.55001
.[26] Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext. Springer, Berlin, 1992. | Zbl 0826.31001
and .[27] Non-microstate free entropy dimension for groups. Geom. Func. Anal. 15 (2005) 476-490. | MR 2153907 | Zbl 1094.46039
and .[28] Non injectivity of the -deformed von Neumann algebra. Math. Ann. 330 (2004) 17-38. | MR 2091676 | Zbl 1060.46051
.[29] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361-400. | MR 1760620 | Zbl 0985.58019
and .[30] Sur des équations aux dérivés partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275 (1972) A101-A103. | MR 312572 | Zbl 0236.60039
.[31] Équations aux dérivées partielles stochastiques de type monotone. In Séminaire sur les Équations aux Dérivées Partielles (1974-1975), III Exp. No. 2 1-10. Collège de France, Paris, 1975. | MR 651582 | Zbl 0363.60041
.[32] A 1-cohomology characterisation of Property (T) in von Neumann algebras. Pacific J. Math. 243 (2009) 181-199. | MR 2550142 | Zbl 1178.22010
.[33] -rigidity in von Neumann algebras. Invent. Math. 175 (2009) 417-433. | MR 2470111 | Zbl 1170.46053
.[34] A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics 1905. Springer, Berlin, 2007. | MR 2329435 | Zbl 1123.60001
and .[35] Stochastic Evolution Systems. Kluwer Academic, Dordrecht, 1990. | MR 1135324
.[36] Strong Feller semigroups on -algebras. J. Operator Theory 42 (1999) 83-102. | MR 1694793 | Zbl 0998.46039
.[37] Some estimates for non-microstate free entropy dimension with applications to -semicircular families. Int. Math. Res. Not. 51 (2004) 2757-2772. | MR 2130608 | Zbl 1075.46055
.[38] Remarks on free entropy dimension. In Operator Algebras Abel Symposia, Volume 1 249-257. Springer, Berlin, 2006. | MR 2265052 | Zbl 1118.46058
.[39] Lower estimates on microstate free entropy dimension. Anal. PDE 2 (2009) 119-146. | MR 2547131 | Zbl 1191.46053
.[40] Gaussian random matrix models for -deformed Gaussian variables. Comm. Math. Phys. 216 (2001) 515-537. | Zbl 1021.81025
.[41] On the regularity of the solutions of stochastic partial differential equations. In Stochastic Differential Systems Filtering and Control. Lecture Notes in Control and Information Sciences 69 71-75. Springer, Berlin, 1985. | MR 798309 | Zbl 0557.60044
.[42] The analogs of entropy and of Fisher's information measure in free probability theory, II. Invent. Math. 118 (1994) 411-440. | MR 1296352 | Zbl 0820.60001
.[43] The analogs of entropy and of Fisher's information measure in free probability theory, V: Non commutative Hilbert Transforms. Invent. Math. 132 (1998) 189-227. | MR 1618636 | Zbl 0930.46053
.[44] The analogs of entropy and of Fisher's information measure in free probability theory, VI: Liberation and mutual free information. Adv. Math. 146 (1999) 101-166. | MR 1711843 | Zbl 0956.46045
.[45] Free entropy. Bull. Lond. Math. Soc. 34 (2002) 257-278. | MR 1887698 | Zbl 1036.46051
.[46] A note on cyclic gradients. Indiana Univ. Math. J. 49 (2000) 837-841. | MR 1803213 | Zbl 1007.16026
.[47] An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour, XIV-1984. Lecture Notes in Math. 1180 265-439. Springer, Berlin, 1986. | MR 876085 | Zbl 0608.60060
.[48] Lipschitz algebras and derivations of von Neumann algebras. J. Funct. Anal. 139 (1996) 261-300. | MR 1402766 | Zbl 0864.46037
.[49] Realizability of a model in infinite statistics. Commun. Math. Phys. 147 (1992) 199-210. | MR 1171767 | Zbl 0789.47042
.