Localization and delocalization for heavy tailed band matrices
Benaych-Georges, Florent ; Péché, Sandrine
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014), p. 1385-1403 / Harvested from Numdam

On considère des matrices aléatoires à structure bande dont la bande a pour largeur N μ et dont les coefficients sont indépendants à queue de distribution en x -α . On s’intéresse aux plus grandes valeurs propres et aux vecteurs propres associés et prouve la transition de phase suivante. D’une part, quand α<2(1+μ -1 ), les plus grandes valeurs propres ont pour ordre N (1+μ)/α , sont asymptotiquement distribuées selon un processus de Poisson et les vecteurs propres associés sont essentiellement portés par deux coordonnées (ce phénomène a déjà été remarqué pour des matrices pleines par Soshnikov dans (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) quand α<2, et par Auffinger et al. dans (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) quand α<4). D’autre part, quand α>2(1+μ -1 ), les plus grandes valeurs propres ont pour ordre N μ/2 et la plupart des vecteurs propres de la matrice sont délocalisés, i.e. approximativement uniformément distribués sur leurs N coordonnées.

We consider some random band matrices with band-width N μ whose entries are independent random variables with distribution tail in x -α . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when α<2(1+μ -1 ), the largest eigenvalues have order N (1+μ)/α , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) when α<2 and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) when α<4). On the other hand, when α>2(1+μ -1 ), the largest eigenvalues have order N μ/2 and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their N coordinates.

Publié le : 2014-01-01
DOI : https://doi.org/10.1214/13-AIHP562
Classification:  15A52,  60F05
@article{AIHPB_2014__50_4_1385_0,
     author = {Benaych-Georges, Florent and P\'ech\'e, Sandrine},
     title = {Localization and delocalization for heavy tailed band matrices},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {50},
     year = {2014},
     pages = {1385-1403},
     doi = {10.1214/13-AIHP562},
     mrnumber = {3269999},
     zbl = {06377559},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1385_0}
}
Benaych-Georges, Florent; Péché, Sandrine. Localization and delocalization for heavy tailed band matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1385-1403. doi : 10.1214/13-AIHP562. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1385_0/

[1] A. Auffinger, G. Ben Arous and S. Péché. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab. Statist. 45 (3) (2009) 589-610. | Numdam | MR 2548495 | Zbl 1177.15037

[2] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2009. | MR 2567175 | Zbl 1301.60002

[3] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York, 1997. | MR 1477662 | Zbl 0863.15001

[4] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathematics 53. Reprint of the 1987 original. SIAM, Philadelphia, PA, 2007. | MR 2325304 | Zbl 1139.15303

[5] G. Ben Arous and A. Guionnet. The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (3) (2007) 715-751. | MR 2373441 | Zbl 1157.60005

[6] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1989. | MR 1015093 | Zbl 0667.26003

[7] C. Bordenave and A. Guionnet. Localization and delocalization of eigenvectors for heavy-tailed random matrices. Preprint. Available at arXiv:1201.1862. | MR 3129806 | Zbl 1296.15019

[8] P. Cizeau and J.-P. Bouchaud. Theory of Lévy matrices. Phys. Rev. E 50 (1994) 1810-1822.

[9] L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, New York, 2001. | MR 1843146 | Zbl 0964.62025

[10] L. Erdös. Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67-198. | MR 2859190 | Zbl 1230.82032

[11] L. Erdös and A. Knowles. Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303 (2) (2011) 509-554. | MR 2782623 | Zbl 1226.15024

[12] L. Erdös and A. Knowles. Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12 (7) (2011) 1227-1319. | MR 2846669 | Zbl 1247.15033

[13] L. Erdös, A. Knowles, H.-T. Yau and J. Yin. Delocalization and diffusion profile for random band matrices. Comm. Math. Phys. 323 (2013) 367-416. | MR 3085669 | Zbl 1279.15027

[14] L. Erdös, B. Schlein and H. T. Yau. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 (2009), 641-655. | MR 2481753 | Zbl 1186.60005

[15] L. Erdös, B. Schlein and H. T. Yau. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob. 37 (2009) 815-852. | MR 2537522 | Zbl 1175.15028

[16] L. Erdös, B. Schlein and H. T. Yau. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 2010 (2010) 436-479. | MR 2587574 | Zbl 1204.15043

[17] W. Feller. An Introduction to Probability Theory and Its Applications, vol. II, 2nd edition. Wiley, New York, 1966. | MR 210154 | Zbl 0219.60003

[18] Y. V. Fyodorov and A. D. Mirlin. Scaling properties of localization in random band matrices: A σ-model approach. Phys. Rev. Lett. 67 (18) (1991) 2405-2409. | MR 1130103 | Zbl 0990.82529

[19] A. Knowles and J. Yin. Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields 155 (2013) 543-582. | MR 3034787 | Zbl 1268.15033

[20] A. Knowles and J. Yin. The outliers of a deformed Wigner matrix. Preprint, 2012. Available at arXiv:1207.5619v1. | MR 3262497 | Zbl pre06363039

[21] M. R. Leadbetter, G. Lindgren and H. Rootzén. Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983. | MR 691492 | Zbl 0518.60021

[22] S. Péché and A. Soshnikov. Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (5-6) (2007) 857-884. | MR 2363385 | Zbl 1139.82019

[23] R. Resnick. Extreme Values, Regular Variation and Point Processes. Springer, New York, 1987. | MR 900810 | Zbl 1136.60004

[24] J. Schenker. Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290 (3) (2009) 1065-1097. | MR 2525652 | Zbl 1179.82079

[25] Y. Sinai and A. Soshnikov. A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. (Russian). Funktsional. Anal. i Prilozhen. 32 (2) (1998) 56-79. 96; translation in Funct. Anal. Appl. 32 (1998), no. 2, 114-131. | MR 1647832 | Zbl 0930.15025

[26] S. Sodin. The spectral edge of some random band matrices. Ann. Math. 172 (2010) 2223-2251. | MR 2726110 | Zbl 1210.15039

[27] Y. Sinai and A. Soshnikov. Central limit theorem for traces of large random symmetric matrices. Bol. Soc. Brasil. Mat. 29 (1) (1998) 1-24. | MR 1620151 | Zbl 0912.15027

[28] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (3) (1999) 697-733. | MR 1727234 | Zbl 1062.82502

[29] A. Soshnikov. Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004) 82-91. | MR 2081462 | Zbl 1060.60013

[30] A. Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351-364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. | MR 2234922 | Zbl 1169.15302

[31] T. Spencer. Random banded and sparse matrices. In The Oxford Handbook of Random Matrix Theory 471-488. Oxford Univ. Press, Oxford, 2011. | MR 2932643 | Zbl 1236.15074

[32] T. Tao and V. Vu. Random matrices: Universal properties of eigenvectors. Random Matrices Theory Appl. 1 (2012) 1150001. | MR 2930379 | Zbl 1248.15031

[33] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2) (2010) 549-572. | MR 2669449 | Zbl 1202.15038