On considère des matrices aléatoires à structure bande dont la bande a pour largeur et dont les coefficients sont indépendants à queue de distribution en . On s’intéresse aux plus grandes valeurs propres et aux vecteurs propres associés et prouve la transition de phase suivante. D’une part, quand , les plus grandes valeurs propres ont pour ordre , sont asymptotiquement distribuées selon un processus de Poisson et les vecteurs propres associés sont essentiellement portés par deux coordonnées (ce phénomène a déjà été remarqué pour des matrices pleines par Soshnikov dans (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) quand , et par Auffinger et al. dans (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) quand ). D’autre part, quand , les plus grandes valeurs propres ont pour ordre et la plupart des vecteurs propres de la matrice sont délocalisés, i.e. approximativement uniformément distribués sur leurs coordonnées.
We consider some random band matrices with band-width whose entries are independent random variables with distribution tail in . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when , the largest eigenvalues have order , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) when and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) when ). On the other hand, when , the largest eigenvalues have order and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their coordinates.
@article{AIHPB_2014__50_4_1385_0, author = {Benaych-Georges, Florent and P\'ech\'e, Sandrine}, title = {Localization and delocalization for heavy tailed band matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {1385-1403}, doi = {10.1214/13-AIHP562}, mrnumber = {3269999}, zbl = {06377559}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1385_0} }
Benaych-Georges, Florent; Péché, Sandrine. Localization and delocalization for heavy tailed band matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1385-1403. doi : 10.1214/13-AIHP562. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1385_0/
[1] Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab. Statist. 45 (3) (2009) 589-610. | Numdam | MR 2548495 | Zbl 1177.15037
, and .[2] Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2009. | MR 2567175 | Zbl 1301.60002
and .[3] Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York, 1997. | MR 1477662 | Zbl 0863.15001
.[4] Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathematics 53. Reprint of the 1987 original. SIAM, Philadelphia, PA, 2007. | MR 2325304 | Zbl 1139.15303
.[5] The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (3) (2007) 715-751. | MR 2373441 | Zbl 1157.60005
and .[6] Regular Variation. Cambridge Univ. Press, Cambridge, 1989. | MR 1015093 | Zbl 0667.26003
, and .[7] Localization and delocalization of eigenvectors for heavy-tailed random matrices. Preprint. Available at arXiv:1201.1862. | MR 3129806 | Zbl 1296.15019
and .[8] Theory of Lévy matrices. Phys. Rev. E 50 (1994) 1810-1822.
and .[9] Combinatorial Methods in Density Estimation. Springer, New York, 2001. | MR 1843146 | Zbl 0964.62025
and .[10] Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67-198. | MR 2859190 | Zbl 1230.82032
.[11] Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303 (2) (2011) 509-554. | MR 2782623 | Zbl 1226.15024
and .[12] Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12 (7) (2011) 1227-1319. | MR 2846669 | Zbl 1247.15033
and .[13] Delocalization and diffusion profile for random band matrices. Comm. Math. Phys. 323 (2013) 367-416. | MR 3085669 | Zbl 1279.15027
, , and .[14] Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 (2009), 641-655. | MR 2481753 | Zbl 1186.60005
, and .[15] Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob. 37 (2009) 815-852. | MR 2537522 | Zbl 1175.15028
, and .[16] Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 2010 (2010) 436-479. | MR 2587574 | Zbl 1204.15043
, and .[17] An Introduction to Probability Theory and Its Applications, vol. II, 2nd edition. Wiley, New York, 1966. | MR 210154 | Zbl 0219.60003
.[18] Scaling properties of localization in random band matrices: A -model approach. Phys. Rev. Lett. 67 (18) (1991) 2405-2409. | MR 1130103 | Zbl 0990.82529
and .[19] Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields 155 (2013) 543-582. | MR 3034787 | Zbl 1268.15033
and .[20] The outliers of a deformed Wigner matrix. Preprint, 2012. Available at arXiv:1207.5619v1. | MR 3262497 | Zbl pre06363039
and .[21] Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983. | MR 691492 | Zbl 0518.60021
, and .[22] Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (5-6) (2007) 857-884. | MR 2363385 | Zbl 1139.82019
and .[23] Extreme Values, Regular Variation and Point Processes. Springer, New York, 1987. | MR 900810 | Zbl 1136.60004
.[24] Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290 (3) (2009) 1065-1097. | MR 2525652 | Zbl 1179.82079
.[25] A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. (Russian). Funktsional. Anal. i Prilozhen. 32 (2) (1998) 56-79. 96; translation in Funct. Anal. Appl. 32 (1998), no. 2, 114-131. | MR 1647832 | Zbl 0930.15025
and .[26] The spectral edge of some random band matrices. Ann. Math. 172 (2010) 2223-2251. | MR 2726110 | Zbl 1210.15039
.[27] Central limit theorem for traces of large random symmetric matrices. Bol. Soc. Brasil. Mat. 29 (1) (1998) 1-24. | MR 1620151 | Zbl 0912.15027
and .[28] Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (3) (1999) 697-733. | MR 1727234 | Zbl 1062.82502
.[29] Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004) 82-91. | MR 2081462 | Zbl 1060.60013
.[30] Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351-364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. | MR 2234922 | Zbl 1169.15302
.[31] Random banded and sparse matrices. In The Oxford Handbook of Random Matrix Theory 471-488. Oxford Univ. Press, Oxford, 2011. | MR 2932643 | Zbl 1236.15074
.[32] Random matrices: Universal properties of eigenvectors. Random Matrices Theory Appl. 1 (2012) 1150001. | MR 2930379 | Zbl 1248.15031
and .[33] Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2) (2010) 549-572. | MR 2669449 | Zbl 1202.15038
and .