Nous calculons presque sûrement la dimension de Hausdorff de l’ensemble de recouvrement aléatoire dans le tore de dimension , où sont des parallélépipèdes, ou plus généralement, des images linéaires d’un ensemble d’intérieur non vide et sont des points aléatoires indépendants et uniformément distribués. La formule de dimension, exprimée en fonction des valeurs singulières des applications linéaires, est valable à condition que la suite de ces valeurs singulières soit décroissante.
We calculate the almost sure Hausdorff dimension of the random covering set in -dimensional torus , where the sets are parallelepipeds, or more generally, linear images of a set with nonempty interior, and are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.
@article{AIHPB_2014__50_4_1371_0, author = {J\"arvenp\"a\"a, Esa and J\"arvenp\"a\"a, Maarit and Koivusalo, Henna and Li, Bing and Suomala, Ville}, title = {Hausdorff dimension of affine random covering sets in torus}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {1371-1384}, doi = {10.1214/13-AIHP556}, mrnumber = {3269998}, zbl = {06377558}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1371_0} }
Järvenpää, Esa; Järvenpää, Maarit; Koivusalo, Henna; Li, Bing; Suomala, Ville. Hausdorff dimension of affine random covering sets in torus. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1371-1384. doi : 10.1214/13-AIHP556. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1371_0/
[1] A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164 (2006) 971-992. | MR 2259250 | Zbl 1148.11033
and .[2] Covering numbers of different points in Dvoretzky covering. Bull. Sci. Math. 129 (4) (2005) 275-317. | MR 2134123 | Zbl 1068.28005
and .[3] Séries de Fourier aléatoirement bornées, continues, uniformément convergentes. Ann. Sci. École Norm. Sup. (3) 82 (1965) 131-179. | Numdam | MR 182832 | Zbl 0134.34102
.[4] On randomly placed arcs on the circle. In Recent Developments in Fractals and Related Fields 343-351. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, 2010. | MR 2743004 | Zbl 1218.60007
.[5] On covering a circle by randomly placed arcs. Proc. Natl. Acad. Sci. USA 42 (1956) 199-203. | MR 79365 | Zbl 0074.12301
.[6] Recouvrement du tore par des ouverts aléatoires et dimension de Hausdorff de l’ensemble non recouvert. C. R. Acad. Sci. Paris Sér. A-B 287 (1978) A815-A818. | MR 538501 | Zbl 0391.60019
.[7] Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 221-254. | MR 177846 | Zbl 0100.02001
.[8] The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103 (1988) 339-350. | MR 923687 | Zbl 0642.28005
.[9] How many intervals cover a point in Dvoretzky covering? Israel J. Math. 131 (2002) 157-184. | MR 1942307 | Zbl 1009.60003
.[10] Rareté des intervalles recouvrant un point dans un recouvrement aléatoire. Ann. Inst. Henri Poincaré Probab. Stat. 29 (1993) 453-466. | Numdam | MR 1246642 | Zbl 0799.60013
and .[11] A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation. Proc. London Math. Soc. (3) 107 (2013) 1173-1219. | MR 3126394 | Zbl pre06236019
, and .[12] On the covering by small random intervals. Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 125-131. | Numdam | MR 2037476 | Zbl 1037.60010
and .[13] On the covering of small sets by random intervals. Quart. J. Math. Oxford Ser. (2) 24 (1973) 427-432. | MR 324748 | Zbl 0307.60019
.[14] On the asymptotic behaviour of sample spacings. Math. Proc. Cambridge Philos. Soc. 90 (2) (1985) 293-303. | MR 620739 | Zbl 0476.60012
.[15] Coverings of metric spaces with randomly placed balls. Math. Scand. 32 (1973) 169-186. | MR 341556 | Zbl 0285.60006
.[16] Random coverings in several dimensions. Acta Math. 156 (1986) 83-118. | MR 822331 | Zbl 0597.60014
.[17] Dynamical models for circle covering: Brownian motion and Poisson updating. Ann. Probab. 36 (2008) 739-764. | MR 2393996 | Zbl 1147.60063
and .[18] Sur le recouvrement d'un cercle par des arcs disposés au hasard. C. R. Acad. Sci. Paris 248 (1956) 184-186. | MR 103533 | Zbl 0090.35801
.[19] Some Random Series of Functions. Cambridge Studies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. | MR 833073 | Zbl 0571.60002
.[20] Recouvrements aléatoires et théorie du potentiel. Colloq. Math. 60/61 (1990) 387-411. | MR 1096386 | Zbl 0728.60053
.[21] Random coverings and multiplicative processes. In Fractal Geometry and Stochastics II 125-146. Progr. Probab. 46. Birkhäuser, Basel, 2000. | MR 1785624 | Zbl 0944.60058
.[22] Hitting probabilities of the random covering sets. In Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics 307-323. Contemp. Math. 601. Amer. Math. Soc., Providence, RI, 2013. | MR 3203868
, and .[23] Diophantine approximation by orbits of Markov maps. Ergodic Theory Dynam. Systems 33 (2013) 585-608. | MR 3035299 | Zbl 1296.37011
and .[24] On Dvoretzky coverings for the circle. Z. Wahrsch. Verw. Gebiete 22 (1972) 158-160. | MR 309163 | Zbl 0222.60044
.[25] Renewal sets and random cutouts. Z. Wahrsch. Verw. Gebiete 22 (1972) 145-157. | MR 309162 | Zbl 0234.60102
.[26] Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, 1995. | MR 1333890 | Zbl 0819.28004
.[27] On the packing dimension and category of exceptional sets of orthogonal projections. Available at http://arxiv.org/abs/1204.2121v3.
.[28] Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete 23 (1972) 163-170. | MR 322923 | Zbl 0238.60006
.[29] Covering the circle with random arcs. Israel J. Math. 11 (1972) 328-345. | MR 295402 | Zbl 0241.60008
.