Nous montrons que le seul flot solution de l’équation différentielle stochastique (EDS) sur où et sont deux bruits blancs indépendants, est un flot coalescent que nous noterons . Le flot est une solution Wiener de l’équation. De plus, est l’unique solution (c’est aussi une solution Wiener) de l’EDS pour tout , et une fonction deux fois continûment mesurable. Un troisième flot peut être construit à partir des mouvements à points de . Ce flot est coalescent et ses mouvements à points sont donnés par les mouvements à points de jusqu’au premier temps de coalescence, avec comme condition que lorsque deux points se rencontrent, ils restent confondus. On remarquera finalement que .
We show that the only flow solving the stochastic differential equation (SDE) on where and are two independent white noises, is a coalescing flow we will denote by . The flow is a Wiener solution of the SDE. Moreover, is the unique solution (it is also a Wiener solution) of the SDE for , and a twice continuously differentiable function. A third flow can be constructed out of the -point motions of . This flow is coalescing and its -point motion is given by the -point motions of up to the first coalescing time, with the condition that when two points meet, they stay together. We note finally that .
@article{AIHPB_2014__50_4_1323_0, author = {Le Jan, Yves and Raimond, Olivier}, title = {Three examples of brownian flows on $\mathbb {R}$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {1323-1346}, doi = {10.1214/13-AIHP541}, mrnumber = {3269996}, zbl = {06377556}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1323_0} }
Le Jan, Yves; Raimond, Olivier. Three examples of brownian flows on $\mathbb {R}$. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1323-1346. doi : 10.1214/13-AIHP541. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1323_0/
[1] Brownian motion on the line. Ph.D. dissertation, Univ. Wisconsin, Madison, 1979.
.[2] On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations with jumps. Preprint, 2011. Available at arXiv:1108.4016.
, and .[3] The Skorokhod problem in a time-dependent interval. Stochastic Process. Appl. 119 (2009) 428-452. | MR 2493998 | Zbl 1186.60035
, and .[4] Lenses in skew Brownian flow. Ann. Probab. 32 (2004) 3085-3115. | MR 2094439 | Zbl 1071.60073
and .[5] The Brownian web. Proc. Natl. Acad. Sci. USA 99 (2002) 15888-15893 (electronic). | MR 1944976 | Zbl 1069.60068
, , and .[6] The Brownian web: Characterization and convergence. Ann. Probab. 32 (2004) 2857-2883. | MR 2094432 | Zbl 1105.60075
, , and .[7] Discrete approximations to solution flows of Tanaka's SDE related to Walsh Brownian motion. In Séminaire de Probabilités XLIV 167-190. Lecture Notes in Math. 2046. Springer, Heidelberg, 2012. | MR 2953347 | Zbl 1261.60054
.[8] Stochastic flows related to Walsh Brownian motion. Electron. J. Probab. 16 (2011) 1563-1599 (electronic). | MR 2835247 | Zbl 1245.60067
.[9] A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab. 38 (2010) 1062-1105. | MR 2674994 | Zbl 1202.60059
and .[10] Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springerg, New York, 1991. | MR 1121940 | Zbl 0734.60060
and .[11] Integration of Brownian vector fields. Ann. Probab. 30 (2002) 826-873. | MR 1905858 | Zbl 1037.60061
and .[12] Flows, coalescence and noise. Ann. Probab. 32 (2004) 1247-1315. | MR 2060298 | Zbl 1065.60066
and .[13] Stochastic flows on the circle. In Probability and Partial Differential Equations in Modern Applied Mathematics 151-162. IMA Vol. Math. Appl. 140. Springer, New York, 2005. | MR 2202038 | Zbl 1094.60041
and .[14] Flows associated to Tanaka's SDE. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 21-34. | MR 2235172 | Zbl 1105.60038
and .[15] Flots stochastiques d'opérateurs dirigés par des bruits gaussiens et poissonniens. Ph.D. dissertation, Univ. Paris-Sud, 2007.
.[16] Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35 (2004) 1250-1310. | MR 2050201 | Zbl 1062.60061
and .[17] Global -solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 (2005) 137-176. | MR 2118862 | Zbl 1098.60062
and .[18] The solution of the perturbed Tanaka equation is pathwise unique. Preprint, 2011. Available at arXiv:1104.0740. | MR 3098074 | Zbl 1284.60134
.[19] Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11 (2006) 934-992 (electronic). | MR 2261058 | Zbl 1111.60043
.[20] Nonclassical stochastic flows and continuous products. Probab. Surv. 1 (2004) 173-298 (electronic). | MR 2068474 | Zbl 1189.60082
.[21] Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math. 38 (1985) 405-443. | MR 792398 | Zbl 0579.60082
and .[22] Reflected Brownian motion in a wedge: Semimartingale property. Z. Wahrsch. Verw. Gebiete 69 (1985) 161-176. | MR 779455 | Zbl 0535.60042
.