Une équation de Boltzmann linéaire est interprétée comme équation de Fokker-Planck associée à la densité de probabilité d’un processus de Markov sur , où est le tore bidimensionnel. Le processus Markovien est ici un processus de sauts réversible avec des temps d’attente entre deux sauts à moyenne finie mais variance infinie. est une fonctionnelle additive de , définie par , où pour petit. Nous prouvons que le processus converge en distribution vers un mouvement brownien bidimensionnel. En conséquence, et moyennant un changement d’échelle approprié, la solution de l’équation de Boltzmann converge vers celle d’ une équation de diffusion.
A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process on , where is the two-dimensional torus. Here is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. is an additive functional of , defined as , where for small . We prove that the rescaled process converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.
@article{AIHPB_2014__50_4_1301_0, author = {Basile, Giada}, title = {From a kinetic equation to a diffusion under an anomalous scaling}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {1301-1322}, doi = {10.1214/13-AIHP554}, mrnumber = {3269995}, zbl = {06377555}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1301_0} }
Basile, Giada. From a kinetic equation to a diffusion under an anomalous scaling. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1301-1322. doi : 10.1214/13-AIHP554. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1301_0/
[1] Weak convergence of stochastic integrals related to counting processes. Z. Wahrsch. Verw. Gebiete 38 (1977) 261-277. | MR 448552 | Zbl 0339.60054
.[2] Energy transport in weakly anharmonic chain. J. Stat. Phys. 124 (2006) 1105-1129. | MR 2265846 | Zbl 1135.82326
, and .[3] Convergence of a kinetic equation to a fractional diffusion equation. Markov Process. Related Fields 16 (2010) 15-44. | MR 2664334 | Zbl 1198.82052
and .[4] Thermal conductivity for a momentum conserving model. Comm. Math. Phys. 287 (1) (2009) 67-98. | MR 2480742 | Zbl 1178.82070
, and .[5] Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195 (1) (2009) 171-203. | MR 2564472 | Zbl 1187.82017
, and .[6] Coercive inequalities for Kawasaki dynamics. The product case. Markov Process. Related Fields 5 (1999) 125-162. | MR 1762171 | Zbl 0934.60096
and .[7] Convergence of Probability Measures, 2nd edition. Wiley-Interscience, New York, 1999. | MR 1700749 | Zbl 0172.21201
.[8] Heat transport in low-dimensional systems. Adv. Phys. 57 (2008) 457-537. DOI:10.1080/00018730802538522.
.[9] Functional limit theorems for dependent variables. Ann. Probab. 6 (1978) 829-849. | MR 503954 | Zbl 0398.60024
and .[10] Central limit theorems for dependent random variables. In Actes, Congrès int. Math. Tome 2 565-570. Gauthier-Villars, Paris, 1970. | MR 420787 | Zbl 0254.60014
.[11] Asymptotic normality for sums of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Probability 513-535. Univ. California Press, Berkeley, 1972. | MR 415728 | Zbl 0256.60009
.[12] Brownian Motion and Diffusion. Holden-Day, San Francisco, 1971. | MR 297016 | Zbl 0231.60072
.[13] On tail probabilities for martingales. Ann. Probab. 3 (1975) 100-118. | MR 380971 | Zbl 0313.60037
.[14] Predel'nye raspredeleniya dlya summ nezavisimyh slučaĭnyh veličin. (Russian) [Limit Distributions for Sums of Independent Random Variables]. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1949. | MR 41377
and .[15] Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19 (6) (2009) 2270-2300. | MR 2588245 | Zbl 1232.60018
, and .[16] Dimensional crossover of thermal transport in few-layer graphene materials. Nature Materials 9 (2010) 555-558.
, , , , , and .[17] Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 9 (1982) 79-94. | MR 668684 | Zbl 0486.60023
.[18] Normal heat conductivity in a strongly pinned chain of anharmonic oscillators. J. Stat. Mech. 2006 (2006) L02001. DOI:10.1088/1742-5468/2006/02/L02001.
and .[19] Thermal conduction in classical low-dimensional lattice. Phys. Rep. 377 (2003) 1-80. | MR 1978992
, and .[20] rates of convergence for attractive reversible nearest particle systems. Ann. Probab. 19 (1991) 935-959. | MR 1112402 | Zbl 0737.60092
.[21] Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal. 183 (2007) 93-162. | MR 2259341 | Zbl 1176.60053
and .[22] Anomalous energy transport in the FPU- chain. Comm. Pure Appl. Math. 61 (2008) 1753-1789. | MR 2456185 | Zbl 1214.82057
and .[23] Dependent central limit theorems and invariance principles. Ann. Probab. 2 (4) (1974) 620-628. | MR 358933 | Zbl 0287.60025
.[24] Fractional diffusion limit for collitional kinetic equations. Arch. Ration. Mech. Anal. 199 (2) (2011) 493-525. | MR 2763032 | Zbl 1294.82033
, and .[25] Markov Chains and Stochastic Stability, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. | MR 2509253 | Zbl 1165.60001
and .[26] Zur kinetischen Theorie der Waermeleitung in Kristallen. Ann. Phys. 3 (1929) 1055-1101. | JFM 55.0547.01
.[27] Fermi-Pasta-Ulam lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68 (2003) 056124. | MR 2060102
.[28] Weak Poincaré inequalities and -convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR 1856277 | Zbl 1009.47028
and .[29] Some invariance principles for random vectors in the generalized domain of attraction of the multivariate normal law. J. Theoret. Probab. 10 (4) (1997) 153-1063. | MR 1481659 | Zbl 0897.60039
.[30] The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124 (2-4) (2006) 1041-1104. | MR 2264633 | Zbl 1106.82033
.