The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent
Erhard, D. ; den Hollander, F. ; Maillard, G.
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014), p. 1231-1275 / Harvested from Numdam

Dans cet article on étudie l’équation parabolique d’Anderson u(x,t)/t=κ𝛥u(x,t)+ξ(x,t)u(x,t), x d , t0, où les champs u et ξ sont à valeurs dans , κ[0,) est la constante de diffusion, et 𝛥 est le laplacien discret. Le champ ξ joue le rôle d’environnement aléatoire dynamique et dirige l’équation. La condition initiale u(x,0)=u 0 (x), x d , est choisie positive et bornée. La solution de l’équation parabolique d’Anderson décrit l’évolution d’un champ de particules effectuant des marches aléatoires simples avec un branchement binaire : les particules sautent au taux 2dκ, se divisent en deux au taux ξ0, et meurent au taux (-ξ)0. Notre but est de prouver un certain nombre de propriétés basiques de la solution u sous des conditions sur ξ qui sont aussi faibles que possible. Ces propriétés vont servir d’impulsion pour de futur améliorations. Tout au long de cet article nous supposons que ξ est stationnaire et ergodique sous les translations en espace et en temps, n’est pas constant et satisfait 𝔼(|ξ(0,0)|)<, où 𝔼 représente l’espérance par rapport à ξ. Sous une hypothèse très faible sur les queues de la distribution de ξ, nous montrons que la solution de l’équation parabolique d’Anderson existe et est unique pour tout κ[0,). Notre principal objet d’intérêt est l’exposant de Lyapunov quenched λ 0 (κ)=lim t 1 tlogu(0,t). Il a été prouvé dans Gärtner, den Hollander et Maillard (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) que cet exposant existe et est constant ξ-a.s., satisfait λ 0 (0)=𝔼(ξ(0,0)) et λ 0 (κ)>𝔼(ξ(0,0)) pour κ(0,), et est tel que κλ 0 (κ) est globalement lipschitzienne sur (0,) à l’extérieur de n’importe quel voisinage de 0 où il est fini. Sous certaines conditions faibles de mélange en espace-temps sur ξ, nous montrons les propriétés suivantes : (1) λ 0 (κ) ne dépend pas de la condition initiale u 0 ; (2) λ 0 (κ)< pour tout κ[0,); (3) κλ 0 (κ) est continue sur [0,) mais pas lipschitzienne en 0. Nous conjecturons en outre : (4) lim κ [λ p (κ)-λ 0 (κ)]=0 pour tout p, où λ p (κ)=lim t 1 ptlog𝔼([u(0,t)] p ) est le p-ième exposant de Lyapunov annealed. (Dans (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) les propriétés (1), (2) et (4) n’ont pas été abordées, tandis que la propriété (3) a été prouvée sous des hypothèses beaucoup plus restrictives sur ξ.) Finalement, nous prouvons que nos conditions faibles de mélange en espace-temps sur ξ sont satisfaites par plusieurs systèmes de particules en interaction.

In this paper we study the parabolic Anderson equation u(x,t)/t=κ𝛥u(x,t)+ξ(x,t)u(x,t), x d , t0, where the u-field and the ξ-field are -valued, κ[0,) is the diffusion constant, and 𝛥 is the discrete Laplacian. The ξ-field plays the role of a dynamic random environment that drives the equation. The initial condition u(x,0)=u 0 (x), x d , is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2dκ, split into two at rate ξ0, and die at rate (-ξ)0. Our goal is to prove a number of basic properties of the solution u under assumptions on ξ that are as weak as possible. These properties will serve as a jump board for later refinements. Throughout the paper we assume that ξ is stationary and ergodic under translations in space and time, is not constant and satisfies 𝔼(|ξ(0,0)|)<, where 𝔼 denotes expectation w.r.t. ξ. Under a mild assumption on the tails of the distribution of ξ, we show that the solution to the parabolic Anderson equation exists and is unique for all κ[0,). Our main object of interest is the quenched Lyapunov exponent λ 0 (κ)=lim t 1 tlogu(0,t). It was shown in Gärtner, den Hollander and Maillard (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) that this exponent exists and is constant ξ-a.s., satisfies λ 0 (0)=𝔼(ξ(0,0)) and λ 0 (κ)>𝔼(ξ(0,0)) for κ(0,), and is such that κλ 0 (κ) is globally Lipschitz on (0,) outside any neighborhood of 0 where it is finite. Under certain weak space-time mixing assumptions on ξ, we show the following properties: (1) λ 0 (κ) does not depend on the initial condition u 0 ; (2) λ 0 (κ)< for all κ[0,); (3) κλ 0 (κ) is continuous on [0,) but not Lipschitz at 0. We further conjecture: (4) lim κ [λ p (κ)-λ 0 (κ)]=0 for all p, where λ p (κ)=lim t 1 ptlog𝔼([u(0,t)] p ) is the pth annealed Lyapunov exponent. (In (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) properties (1), (2) and (4) were not addressed, while property (3) was shown under much more restrictive assumptions on ξ.) Finally, we prove that our weak space-time mixing conditions on ξ are satisfied for several classes of interacting particle systems.

Publié le : 2014-01-01
DOI : https://doi.org/10.1214/13-AIHP558
Classification:  60H25,  82C44,  60F10,  35B40
@article{AIHPB_2014__50_4_1231_0,
     author = {Erhard, D. and den Hollander, Frank and Maillard, G.},
     title = {The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {50},
     year = {2014},
     pages = {1231-1275},
     doi = {10.1214/13-AIHP558},
     mrnumber = {3269993},
     zbl = {06377553},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_4_1231_0}
}
Erhard, D.; den Hollander, F.; Maillard, G. The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1231-1275. doi : 10.1214/13-AIHP558. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_4_1231_0/

[1] E. D. Andjel. Invariant measure for the zero range process. Ann. Probab. 10 (1982) 525-547. | MR 659526 | Zbl 0492.60096

[2] R. A. Carmona and S. A. Molchanov. Parabolic Anderson Problem and Intermittency. AMS Memoirs 518. American Mathematical Society, Providence, RI, 1994. | MR 1185878 | Zbl 0925.35074

[3] J. T. Cox and D. Griffeath. Large deviations for Poisson systems of independent random walks. Z. Wahrsch. Verw. Gebiete 66 (1984) 543-558. | MR 753813 | Zbl 0551.60028

[4] M. Cranston, T. S. Mountford and T. Shiga. Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. (N.S.) 71 (2002) 163-188. | MR 1980378 | Zbl 1046.60057

[5] A. Drewitz, J. Gärtner, A. F. Ramirez and R. Sun. Survival probability of a random walk among a Poisson system of moving traps. In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner 119-158. J.-D. Deuschel, B. Gentz, W. König, M.-K. van Renesse, M. Scheutzow and U. Schmock (Eds). Springer Proceedings in Mathematics 11. Springer, Berlin, 2012. | Zbl 1267.60109

[6] P. Erdös. On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. Math. 43 (1942) 437-450. | MR 6749 | Zbl 0061.07905

[7] J. Gärtner and F. Den Hollander. Intermittency in a catalytic random medium. Ann. Probab. 34 (2006) 2219-2287. | MR 2294981 | Zbl 1117.60065

[8] J. Gärtner, F. Den Hollander and G. Maillard. Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment. In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner 159-193. J.-D. Deuschel, B. Gentz, W. König, M.-K. van Renesse, M. Scheutzow and U. Schmock (Eds). Springer Proceedings in Mathematics 11. Springer, Berlin, 2012. | Zbl 1252.39027

[9] J. Gärtner and S. A. Molchanov. Parabolic problems for the Anderson model. Comm. Math. Phys. 132 (1990) 613-655. | MR 1069840 | Zbl 0711.60055

[10] G. H. Hardy and S. A. Ramanujan. Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. (3) 17 (1918) 75-115. | JFM 46.0198.04 | MR 1575586

[11] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 320. Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002

[12] H. Kesten and V. Sidoravicius. Branching random walks with catalysts. Electron. J. Probab. 8 (2003) 1-51. | MR 1961167 | Zbl 1064.60196

[13] C. Landim. Occupation time large deviations for the symmetric simple exclusion process. Ann. Probab. 20 (1992) 206-231. | MR 1143419 | Zbl 0751.60098

[14] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. | MR 776231 | Zbl 0559.60078

[15] F. Redig and F. Völlering. Concentration of additive functionals for Markov processes. Preprint, 2011. Available at http://arXiv.org/abs/1003.0006v2.

[16] L. Wu. Feynman-Kac semigroups, ground state diffusions, and large deviations. J. Funct. Anal. 123 (1994) 202-231. | MR 1279300 | Zbl 0798.60067

[17] L. Wu. A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri Poincaré Probab. Stat. 4 (2000) 435-445. | Numdam | MR 1785390 | Zbl 0972.60003