Dans cet article, nous étudions le théorème central limite conditionnel presque sûr, ainsi que sa forme fonctionnelle, pour des suites stationnaires de variables aléatoires réelles satisfaisant une condition de type projectif. Nous donnons des applications de ces résultats aux processus fortement mélangeants ainsi qu'à des chaînes de Markov nonirréductibles. Les preuves sont essentiellement basées sur une approximation normale de suites doublement indexées de variables aléatoires de type martingale.
In this paper we study the almost sure conditional central limit theorem in its functional form for a class of random variables satisfying a projective criterion. Applications to strongly mixing processes and nonirreducible Markov chains are given. The proofs are based on the normal approximation of double indexed martingale-like sequences, an approach which has interest in itself.
@article{AIHPB_2014__50_3_872_0, author = {Dedecker, J\'er\^ome and Merlev\`ede, Florence and Peligrad, Magda}, title = {A quenched weak invariance principle}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {872-898}, doi = {10.1214/13-AIHP553}, mrnumber = {3224292}, zbl = {1304.60031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_3_872_0} }
Dedecker, Jérôme; Merlevède, Florence; Peligrad, Magda. A quenched weak invariance principle. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 872-898. doi : 10.1214/13-AIHP553. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_3_872_0/
[1] Limit Theorems for Functionals of Random Walks. Trudy Mat. Inst. Steklov. 195. Nauka, St. Petersburg, 1994. Transl. into English: Proc. Steklov Inst. Math. 195. Amer. Math. Soc., Providence, RI, 1995. | MR 1368394 | Zbl 0855.60001
and .[2] On quantiles and the central limit question for strongly mixing sequences. Dedicated to Murray Rosenblatt. J. Theoret. Probab. 10 (1997) 507-555. | MR 1455156 | Zbl 0887.60028
.[3] Martingale central limit theorems. Ann. Math. Statist. 42 (1971) 59-66. | MR 290428 | Zbl 0218.60048
.[4] Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139 (1999) xiv+203. | MR 1491814 | Zbl 0952.60014
.[5] Pointwise ergodic theorems with rate and application to limit theorems for stationary processes. Stoch. Dyn. 11 (2011) 135-155. | MR 2771346 | Zbl 1210.60031
.[6] On martingale approximations and the quenched weak invariance principle. Ann. Probab. 42 (2014) 760-793. | MR 3178473 | Zbl pre06288293
and .[7] Central limit theorem started at a point for additive functional of reversible Markov Chains. J. Theoret. Probab. 25 (2012) 171-188. | MR 2886384 | Zbl 1247.60031
and .[8] A quenched invariance principle for stationary processes. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013) 107-115. | MR 3083921 | Zbl 1277.60056
and .[9] Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 796-821. | Numdam | MR 2682267 | Zbl 1206.60032
, and .[10] Necessary and sufficient conditions for the conditional central limit theorem. Ann. Probab. 30 (2002) 1044-1081. | MR 1920101 | Zbl 1015.60016
and .[11] On the functional central limit theorem for stationary processes. Ann. Inst. Henri Poincaré Probab. Stat. 36 (2000) 1-34. | Numdam | MR 1743095 | Zbl 0949.60049
and .[12] The central limit theorem for Markov chains with normal transition operators, started at a point. Probab. Theory Related Fields 119 (2001) 508-528. | MR 1826405 | Zbl 0974.60017
and .[13] The central limit theorem for Markov chains started at a point. Probab. Theory Related Fields 125 (2003) 73-76. | MR 1952457 | Zbl 1012.60028
and .[14] The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Stat. 30 (1994) 63-82. | Numdam | MR 1262892 | Zbl 0790.60037
, and .[15] Independence of four projective criteria for the weak invariance principle. ALEA Lat. Am. J. Probab. Math. Stat. 5 (2009) 21-26. | MR 2475604 | Zbl 1169.60005
.[16] Comparison between criteria leading to the weak invariance principle. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 324-340. | Numdam | MR 2446326 | Zbl 1182.60010
and .[17] On moment conditions for normed sums of independent variables and martingale differences. Stochastic Process. Appl. 19 (1985) 173-182. | MR 780729 | Zbl 0554.60050
and .[18] The central limit theorem for stationary processes. Soviet Math. Dokl. 10 (1969) 1174-1176. | MR 251785 | Zbl 0212.50005
.[19] Abstracts of communication, T.1: A-K. In International Conference on Probability Theory, Vilnius, 1973.
.[20] The central limit theorem for stationary Markov processes. Soviet Math. Dokl. 19 (1978) 392-394. | MR 501277 | Zbl 0395.60057
and .[21] Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128 (2004) 82-122. | MR 2027296 | Zbl 1038.37007
.[22] On the departure from normality of a certain class of martingales. Ann. Math. Statist. 41 (1970) 2161-2165. | MR 293702 | Zbl 0225.60026
and .[23] Ergodic Theorems. de Gruyter Studies in Mathematics 6. de Gruyter, Berlin, 1985. | MR 797411 | Zbl 0575.28009
.[24] Central limit theorem for additive fonctionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | MR 1782272 | Zbl 1044.60014
and .[25] Recent advances in invariance principles for stationary sequences. Probab. Surv. 3 (2006) 1-36. | MR 2206313 | Zbl 1189.60078
, and .[26] Almost sure invariance principles via martingale approximation. Stochastic Process. Appl. 122 (2012) 170-190. | MR 2860446 | Zbl 1230.60029
, and .[27] Strong approximation of partial sums under dependence conditions with application to dynamical systems. Stochastic Process. Appl. 122 (2012) 386-417. | MR 2860454 | Zbl 1230.60034
and .[28] Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer-Verlag, London, 1993. | MR 1287609 | Zbl 0925.60001
and .[29] Central limit theorem for stationary linear processes. Ann. Probab. 34 (2006) 1608-1622. | MR 2257658 | Zbl 1101.60014
and .[30] Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74 (1980) 189-197. | MR 576270 | Zbl 0578.76059
and .[31] A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43-47. | MR 74711 | Zbl 0070.13804
.[32] A weak isomorphism of transformations with invariant measure. Dokl. Akad. Nauk SSSR 147 (1962) 797-800. | MR 161960 | Zbl 0205.13501
.[33] On the invariance principle and the law of iterated logarithm for stationary processes. In Mathematical Physics and Stochastic Analysis 424-438. World Sci. Publishing, River Edge, 2000. | MR 1893125 | Zbl 0974.60013
and .[34] An example of non-quenched convergence in the conditional central limit theorem for partial sums of a linear process. In Dependence in Analysis, Probability and Number Theory (The Phillipp memorial volume) 317-323. Kendrick Press, Heber City, UT, 2010. | MR 2731055 | Zbl 1213.60051
and .[35] Quenched central limit theorems for sums of stationary processes. Preprint, 2010. Available at arXiv:1006.1795. | MR 3157895 | Zbl 1290.60027
and .[36] Martingale approximations for sums of stationary processes. Ann. Probab. 32 (2004) 1674-1690. | MR 2060314 | Zbl 1057.60022
and .[37] Law of the iterated logarithm for stationary processes. Ann. Probab. 36 (2008) 127-142. | MR 2370600 | Zbl 1130.60039
and .