L’objetcif de ce papier est d’établir des inégalités de déviations et les principes de déviations modérées pour les estimateurs des moindres carrés des paramètres inconnus d’un processus bifurcant autorégressif asymétrique d’ordre , sous certaines conditions sur la suite des bruits. Les preuves reposent sur les principes de déviations modérées des martingales.
The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.
@article{AIHPB_2014__50_3_806_0, author = {Bitseki Penda, S. Val\`ere and Djellout, Hac\`ene}, title = {Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {806-844}, doi = {10.1214/13-AIHP545}, mrnumber = {3224290}, zbl = {1302.60052}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_3_806_0} }
Bitseki Penda, S. Valère; Djellout, Hacène. Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 806-844. doi : 10.1214/13-AIHP545. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_3_806_0/
[1] CLT for Ornstein-Uhlenbeck branching particle system. Preprint. Available at arXiv:1111.4559.
and .[2] Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. 41 (2004) 55-64. | MR 2057565 | Zbl 1049.62115
and .[3] Asymtotic analysis for bifurcating autoregressive processes via martingale approach. Electron. J. Probab. 14 (2009) 2492-2526. | MR 2563249 | Zbl 1190.60019
, and .[4] Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. 18 (2008) 1848-1869. | MR 2462551 | Zbl 1152.60309
and .[5] Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab. 24 (2014) 235-291. | MR 3161647 | Zbl 1293.60036
, and .[6] The bifurcating autoregressive model in cell lineage studies. Biometrics 42 (1986) 769-783. | Zbl 0622.62105
and .[7] Self-Normalized Processes. Limit Theory and Statistical Applications. Probability and Its Applications (New York). Springer-Verlag, Berlin, 2009. | MR 2488094 | Zbl 1165.62071
, and .[8] Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 (2011) 1313-1353. | MR 2842907 | Zbl 1274.62192
, and .[9] Asymmetry tests for bifurcating auto-regressive processes with missing data. Statist. Probab. Lett. 82 (2012) 1439-1444. | MR 2929798 | Zbl 1296.62161
, and .[10] Detection of cellular aging in a Galton-Watson process. Stochastic Process. Appl. 120 (2010) 2495-2519. | MR 2728175 | Zbl 1206.60077
and .[11] Moderate deviations for martingales with bounded jumps. Electron. Comm. Probab. 1 (1996) 11-17. | MR 1386290 | Zbl 0854.60027
.[12] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR 1619036 | Zbl 1177.60035
and .[13] Moderate deviations for martingale differences and applications to -mixing sequences. Stoch. Stoch. Rep. 73 (2002) 37-63. | MR 1914978 | Zbl 1005.60044
.[14] Moderate deviations of empirical periodogram and non-linear functionals of moving average processes. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 393-416. | Numdam | MR 2242954 | Zbl 1100.60010
, and .[15] Large and moderate deviations for moving average processes. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001) 23-31. | Numdam | MR 1928987 | Zbl 1002.60028
and .[16] Integral criteria for transportation-cost inequalities. Electron. Comm. Probab. 11 (2006) 64-77. | MR 2231734 | Zbl 1112.60009
.[17] A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields 139 (2007) 235-283. | MR 2322697 | Zbl 1126.60022
and .[18] Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538-1569. | MR 2358633 | Zbl 1143.62049
.[19] Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab. 36 (1999) 1225-1233. | MR 1746406 | Zbl 0973.62100
and .[20] Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 (2000) 423-432. | MR 1802966 | Zbl 1016.62098
and .[21] Local asymptotic normality for bifurcating autoregressive processes and related asymptotic inference. Stat. Methodol. 6 (2009) 61-69. | MR 2655539 | Zbl 1220.62106
, and .[22] The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI, 2001. | MR 1849347 | Zbl 0995.60002
.[23] Concentration Inequalities and Model Selection. Lecture Notes in Mathematics 1896. Springer, Berlin, 2007. | MR 2319879 | Zbl 1170.60006
.[24] Large deviations of semimartingales: A maxingale problem approach. I. Limits as solutions to a maxingale problem. Stoch. Stoch. Rep. 61 (1997) 141-243. | MR 1488137 | Zbl 0890.60025
.[25] Moderate deviations for stable Markov chains and regression models. Electron. J. Probab. 4 (1999) 28 pp. | MR 1684149 | Zbl 0980.62082
.[26] Moderate deviations of some dependent variables. I. Martingales. Math. Methods Statist. 10 (2001) 38-72. | MR 1841808 | Zbl 1007.60010
.[27] Moderate deviations of some dependent variables. II. Some kernel estimators. Math. Methods Statist. 10 (2001) 161-193. | MR 1851746 | Zbl 1007.60011
.[28] Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett. 74 (2005) 77-88. | MR 2189078 | Zbl 1070.62075
and .[29] Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Series Anal. 26 (2005) 825-842. | MR 2203513 | Zbl 1097.62091
and .