Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models
Bitseki Penda, S. Valère ; Djellout, Hacène
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014), p. 806-844 / Harvested from Numdam

L’objetcif de ce papier est d’établir des inégalités de déviations et les principes de déviations modérées pour les estimateurs des moindres carrés des paramètres inconnus d’un processus bifurcant autorégressif asymétrique d’ordre p, sous certaines conditions sur la suite des bruits. Les preuves reposent sur les principes de déviations modérées des martingales.

The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general pth-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.

Publié le : 2014-01-01
DOI : https://doi.org/10.1214/13-AIHP545
Classification:  60F10,  62F12,  60G42,  62M10,  62G05
@article{AIHPB_2014__50_3_806_0,
     author = {Bitseki Penda, S. Val\`ere and Djellout, Hac\`ene},
     title = {Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {50},
     year = {2014},
     pages = {806-844},
     doi = {10.1214/13-AIHP545},
     mrnumber = {3224290},
     zbl = {1302.60052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_3_806_0}
}
Bitseki Penda, S. Valère; Djellout, Hacène. Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 806-844. doi : 10.1214/13-AIHP545. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_3_806_0/

[1] R. Adamczak and P. Milos. CLT for Ornstein-Uhlenbeck branching particle system. Preprint. Available at arXiv:1111.4559.

[2] I. V. Basawa and J. Zhou. Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. 41 (2004) 55-64. | MR 2057565 | Zbl 1049.62115

[3] B. Bercu, B. De Saporta and A. Gégout-Petit. Asymtotic analysis for bifurcating autoregressive processes via martingale approach. Electron. J. Probab. 14 (2009) 2492-2526. | MR 2563249 | Zbl 1190.60019

[4] B. Bercu and A. Touati. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. 18 (2008) 1848-1869. | MR 2462551 | Zbl 1152.60309

[5] V. Bitseki Penda, H. Djellout and A. Guillin. Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab. 24 (2014) 235-291. | MR 3161647 | Zbl 1293.60036

[6] R. Cowan and R. G. Staudte. The bifurcating autoregressive model in cell lineage studies. Biometrics 42 (1986) 769-783. | Zbl 0622.62105

[7] V. H. De La Peña, T. L. Lai and Q.-M. Shao. Self-Normalized Processes. Limit Theory and Statistical Applications. Probability and Its Applications (New York). Springer-Verlag, Berlin, 2009. | MR 2488094 | Zbl 1165.62071

[8] B. De Saporta, A. Gégout-Petit and L. Marsalle. Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 (2011) 1313-1353. | MR 2842907 | Zbl 1274.62192

[9] B. De Saporta, A. Gégout-Petit and L. Marsalle. Asymmetry tests for bifurcating auto-regressive processes with missing data. Statist. Probab. Lett. 82 (2012) 1439-1444. | MR 2929798 | Zbl 1296.62161

[10] J. F. Delmas and L. Marsalle. Detection of cellular aging in a Galton-Watson process. Stochastic Process. Appl. 120 (2010) 2495-2519. | MR 2728175 | Zbl 1206.60077

[11] A. Dembo. Moderate deviations for martingales with bounded jumps. Electron. Comm. Probab. 1 (1996) 11-17. | MR 1386290 | Zbl 0854.60027

[12] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR 1619036 | Zbl 1177.60035

[13] H. Djellout. Moderate deviations for martingale differences and applications to φ-mixing sequences. Stoch. Stoch. Rep. 73 (2002) 37-63. | MR 1914978 | Zbl 1005.60044

[14] H. Djellout, A. Guillin and L. Wu. Moderate deviations of empirical periodogram and non-linear functionals of moving average processes. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 393-416. | Numdam | MR 2242954 | Zbl 1100.60010

[15] H. Djellout and A. Guillin. Large and moderate deviations for moving average processes. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001) 23-31. | Numdam | MR 1928987 | Zbl 1002.60028

[16] N. Gozlan. Integral criteria for transportation-cost inequalities. Electron. Comm. Probab. 11 (2006) 64-77. | MR 2231734 | Zbl 1112.60009

[17] N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields 139 (2007) 235-283. | MR 2322697 | Zbl 1126.60022

[18] J. Guyon. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538-1569. | MR 2358633 | Zbl 1143.62049

[19] R. M. Huggins and I. V. Basawa. Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab. 36 (1999) 1225-1233. | MR 1746406 | Zbl 0973.62100

[20] R. M. Huggins and I. V. Basawa. Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 (2000) 423-432. | MR 1802966 | Zbl 1016.62098

[21] S. Y. Hwang, I. V. Basawa and I. K. Yeo. Local asymptotic normality for bifurcating autoregressive processes and related asymptotic inference. Stat. Methodol. 6 (2009) 61-69. | MR 2655539 | Zbl 1220.62106

[22] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI, 2001. | MR 1849347 | Zbl 0995.60002

[23] P. Massart. Concentration Inequalities and Model Selection. Lecture Notes in Mathematics 1896. Springer, Berlin, 2007. | MR 2319879 | Zbl 1170.60006

[24] A. Puhalskii. Large deviations of semimartingales: A maxingale problem approach. I. Limits as solutions to a maxingale problem. Stoch. Stoch. Rep. 61 (1997) 141-243. | MR 1488137 | Zbl 0890.60025

[25] J. Worms. Moderate deviations for stable Markov chains and regression models. Electron. J. Probab. 4 (1999) 28 pp. | MR 1684149 | Zbl 0980.62082

[26] J. Worms. Moderate deviations of some dependent variables. I. Martingales. Math. Methods Statist. 10 (2001) 38-72. | MR 1841808 | Zbl 1007.60010

[27] J. Worms. Moderate deviations of some dependent variables. II. Some kernel estimators. Math. Methods Statist. 10 (2001) 161-193. | MR 1851746 | Zbl 1007.60011

[28] J. Zhou and I. V. Basawa. Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett. 74 (2005) 77-88. | MR 2189078 | Zbl 1070.62075

[29] J. Zhou and I. V. Basawa. Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Series Anal. 26 (2005) 825-842. | MR 2203513 | Zbl 1097.62091