Nous présentons une nouvelle procédure de sélection d’estimateurs pour estimer l’espérance d’un vecteur de variables gaussiennes indépendantes dont la variance est inconnue. Nous proposons de choisir un estimateur de , dont l’objectif est de minimiser le risque , dans une collection arbitraire et éventuellement infinie d’estimateurs. La procédure de choix ainsi que la collection ne dépendent que des seules observations . Nous calculons une borne de risque, non asymptotique, ne nécessitant aucune hypothèse sur les estimateurs dans , ni la connaissance de leur dépendance en . Nous calculons des inégalités de type “oracle” quand est une collection d’estimateurs linéaires. Nous considérons plusieurs cas particuliers : estimation par aggrégation, estimation par sélection de modèles, choix d’une fenêtre et du paramètre de lissage en régression fonctionnelle, choix du paramètre de régularisation dans un critère pénalisé. Pour tous ces cas particuliers, sauf pour les méthodes d’aggrégation, la méthode est très facile à programmer. A titre d’illustration nous montrons des résultats de simulations avec deux objectifs : comparer notre méthode à la procédure de cross-validation, montrer comment la mettre en œuvre dans le cadre de la sélection de variables.
We consider the problem of estimating the mean of a Gaussian vector with independent components of common unknown variance . Our estimation procedure is based on estimator selection. More precisely, we start with an arbitrary and possibly infinite collection of estimators of based on and, with the same data , aim at selecting an estimator among with the smallest Euclidean risk. No assumptions on the estimators are made and their dependencies with respect to may be unknown. We establish a non-asymptotic risk bound for the selected estimator and derive oracle-type inequalities when consists of linear estimators. As particular cases, our approach allows to handle the problems of aggregation, model selection as well as those of choosing a window and a kernel for estimating a regression function, or tuning the parameter involved in a penalized criterion. In all theses cases but aggregation, the method can be easily implemented. For illustration, we carry out two simulation studies. One aims at comparing our procedure to cross-validation for choosing a tuning parameter. The other shows how to implement our approach to solve the problem of variable selection in practice.
@article{AIHPB_2014__50_3_1092_0, author = {Baraud, Yannick and Giraud, Christophe and Huet, Sylvie}, title = {Estimator selection in the gaussian setting}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {1092-1119}, doi = {10.1214/13-AIHP539}, mrnumber = {3224300}, zbl = {1298.62113}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_3_1092_0} }
Baraud, Yannick; Giraud, Christophe; Huet, Sylvie. Estimator selection in the gaussian setting. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 1092-1119. doi : 10.1214/13-AIHP539. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_3_1092_0/
[1] Rééchantillonnage et Sélection de modèles. Ph.D. thesis, Univ. Paris XI, 2007.
.[2] Model selection by resampling penalization. Electron. J. Stat. 3 (2009) 557-624. | MR 2519533 | Zbl pre06166454
.[3] Data-driven calibration of linear estimators with minimal penalties, 2011. Available at arXiv:0909.1884v2.
and .[4] A survey of cross-validation procedures for model selection. Stat. Surv. 4 (2010) 40-79. | MR 2602303 | Zbl 1190.62080
and .[5] Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467-493. | MR 1777129 | Zbl 0997.62027
.[6] Estimator selection with respect to Hellinger-type risks. Probab. Theory Related Fields 151 (2011) 353-401. | MR 2834722 | Zbl pre05968717
.[7] Gaussian model selection with an unknown variance. Ann. Statist. 37 (2009) 630-672. | MR 2502646 | Zbl 1162.62051
, and .[8] Estimator selection in the Gaussian setting, 2010. Available at arXiv:1007.2096v1. | MR 3224300 | Zbl 1298.62113
, and .[9] Model selection via testing: An alternative to (penalized) maximum likelihood estimators. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 273-325. | Numdam | MR 2219712 | Zbl pre05024238
.[10] Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 (2001) 203-268. | MR 1848946 | Zbl 1037.62001
and .[11] Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics 8 (2006) 32-44.
and .[12] Random forests. Mach. Learn. 45 (2001) 5-32. | Zbl 1007.68152
.[13] Aggregation for Gaussian regression. Ann. Statist. 35 (2007) 1674-1697. | MR 2351101 | Zbl 1209.62065
, and .[14] The Dantzig selector: Statistical estimation when is much larger than . Ann. Statist. 35 (2007) 2313-2351. | MR 2382644 | Zbl 1139.62019
and .[15] On oracle inequalities related to smoothing splines. Math. Methods Statist. 15 (2006) 398-414. | MR 2301659
and .[16] Mixture approach to universal model selection. Technical report, Ecole Normale Supérieure, France, 1997. | Zbl 0928.62033
.[17] Statistical learning theory and stochastic optimization. In Lecture Notes from the 31st Summer School on Probability Theory Held in Saint-Flour, July 8-25, 2001. Springer, Berlin, 2004. | MR 2163920 | Zbl 1076.93002
.[18] Model selection via cross-validation in density estimation, regression, and change-points detection. Ph.D. thesis, Univ. Paris XI, 2008.
.[19] Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20 (1998) 33-61 (electronic). | MR 1639094 | Zbl 0919.94002
, and .[20] Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7 (2006) 3.
and .[21] Least angle regression. Ann. Statist. 32 (2004) 407-499. With discussion, and a rejoinder by the authors. | MR 2060166 | Zbl 1091.62054
, , and .[22] Variable selection using random forests. Patter Recognition Lett. 31 (2010) 2225-2236.
, and .[23] Mixing least-squares estimators when the variance is unknown. Bernoulli 14 (2008) 1089-1107. | MR 2543587 | Zbl 1168.62327
.[24] High-dimensional regression with unknown variance. Statist. Sci. 27 (2013) 500-518. | MR 3025131
, and .[25] A universal procedure for aggregating estimators. Ann. Statist. 37 (2009) 542-568. | MR 2488362 | Zbl 1155.62018
.[26] Structural adaptation via -norm oracle inequalities. Probab. Theory Related Fields 143 (2009) 41-71. | MR 2449122 | Zbl 1149.62020
and .[27] Partial least squares regression. In Encyclopedia of Statistical Sciences, 2nd edition 9 5957-5962. S. Kotz, N. Balakrishnan, C. Read, B. Vidakovic and N. Johnston (Eds.). Wiley, New York, 2006.
.[28] Some theoretical aspects of partial least squares regression. Chemometrics and Intelligent Laboratory Systems 58 (2001) 97-107.
.[29] Ridge regression: Bayes estimation for nonorthogonal problems. Technometrics 12 (1970) 55-67. | Zbl 0202.17205
and .[30] Ridge regression. In Encyclopedia of Statistical Sciences, 2nd edition 11 7273-7280. S. Kotz, N. Balakrishnan, C. Read, B. Vidakovic and N. Johnston (Eds.). Wiley, New York, 2006. | Zbl 0727.62001
and .[31] Adaptive Lasso for sparse high-dimensional regression models. Statist. Sinica 4 (2008) 1603-1618. | MR 2469326 | Zbl 1255.62198
, and .[32] Functional aggregation for nonparametric regression. Ann. Statist. 28 (2000) 681-712. | MR 1792783 | Zbl 1105.62338
and .[33] A problem of adaptive estimation in Gaussian white noise. Teor. Veroyatnost. i Primenen. 35 (1990) 459-470. | MR 1091202 | Zbl 0725.62075
.[34] Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. Teor. Veroyatnost. i Primenen. 36 (1991) 645-659. | MR 1147167 | Zbl 0738.62045
.[35] Asymptotically minimax adaptive estimation. II. Schemes without optimal adaptation. Adaptive estimates. Teor. Veroyatnost. i Primenen. 37 (1992) 468-481. | MR 1214353 | Zbl 0761.62115
.[36] On problems of adaptive estimation in white Gaussian noise. In Topics in Nonparametric Estimation 87-106. Adv. Soviet Math. 12. Amer. Math. Soc., Providence, RI, 1992. | MR 1191692 | Zbl 0783.62061
.[37] Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory 52 (2006) 3396-3410. | MR 2242356
and .[38] Random approximants and neural networks. J. Approx. Theory 85 (1996) 98-109. | MR 1382053 | Zbl 0857.41024
.[39] On estimating regression. Theory Probab. Appl. 9 (1964) 141-142. | Zbl 0136.40902
.[40] Topics in non-parametric statistics. In Lectures on probability theory and statistics (Saint-Flour, 1998) 85-277. Lecture Notes in Math. 1738. Springer, Berlin, 2000. | MR 1775640 | Zbl 0998.62033
.[41] Linear and convex aggregation of density estimators. Math. Methods Statist. 16 (2007) 260-280. | MR 2356821 | Zbl 1231.62057
and .[42] Optimal aggregation of affine estimators. J. Mach. Learn. Res. 19 (2011) 635-660.
and .[43] Conditional variable importance for random forests. BMC Bioinformatics 9 (2008) 307.
, , , and .[44] Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8 (2007) 25.
, , and .[45] La régression PLS. Éditions Technip, Paris. Théorie et pratique, 1998. [Theory and application]. | MR 1645125 | Zbl 0923.62058
.[46] Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288. | MR 1379242 | Zbl 0850.62538
.[47] Optimal rates of aggregation. In Proceedings of the 16th Annual Conference on Learning Theory (COLT) and 7th Annual Workshop on Kernel Machines 303-313. Lecture Notes in Artificial Intelligence 2777. Springer, Berlin, 2003. | Zbl 1208.62073
.[48] Smooth regression analysis. Sankhyā Ser. A 26 (1964) 359-372. | MR 185765 | Zbl 0137.13002
.[49] Model selection in nonparametric regression. Ann. Statist. 31 (2003) 252-273. | MR 1962506 | Zbl 1019.62037
.[50] Model selection for nonparametric regression. Statist. Sinica 9 (1999) 475-499. | MR 1707850 | Zbl 0921.62051
.[51] Combining different procedures for adaptive regression. J. Multivariate Anal. 74 (2000) 135-161. | MR 1790617 | Zbl 0964.62032
.[52] Mixing strategies for density estimation. Ann. Statist. 28 (2000) 75-87. | MR 1762904 | Zbl 1106.62322
.[53] Adaptive regression by mixing. J. Amer. Statist. Assoc. 96 (2001) 574-588. | MR 1946426 | Zbl 1018.62033
.[54] Learning bounds for kernel regression using effective data dimensionality. Neural Comput. 17 (2005) 2077-2098. | MR 2175849 | Zbl 1080.68044
.[55] Adaptive forward-backward greedy algorithm for learning sparse representations. Technical report, Rutgers Univ., NJ, 2008.
.[56] P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn. Res. 7 (2006) 2541-2563. | MR 2274449 | Zbl 1222.62008
[57] The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 (2006) 1418-1429. | MR 2279469 | Zbl 1171.62326
.[58] Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 301-320. | MR 2137327 | Zbl 1069.62054
and .[59] On the “degrees of freedom” of the Lasso. Ann. Statist. 35 (2007) 2173-2192. | MR 2363967 | Zbl 1126.62061
, and