Soit , , un tableau à double entrées, les étant des variables aléatoires réelles indépendantes et identiquement distribuées (i.i.d.) et où , et . Considérons les matrices de covariances empiriques suivantes (avec/sans centrage empirique): et , avec et , où est une matrice déterministe définie positive. Nous démontrons que, sous le régime asymptotique et converge vers une constante positive, le théorème central limite pour la statistique est différent de celui concernant la statistique . En outre, nous montrons que cette différence de comportement n’est pas observée pour le comportement moyen des vecteurs propres.
Let , , be a double array of independent and identically distributed (i.i.d.) real random variables with , and . Consider sample covariance matrices (with/without empirical centering) and , where and with , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of and are different as with approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.
@article{AIHPB_2014__50_2_655_0, author = {Pan, Guangming}, title = {Comparison between two types of large sample covariance matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {655-677}, doi = {10.1214/12-AIHP506}, mrnumber = {3189088}, zbl = {1295.15023}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_2_655_0} }
Pan, Guangming. Comparison between two types of large sample covariance matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 655-677. doi : 10.1214/12-AIHP506. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_2_655_0/
[1] An Introduction to Multivariate Statistical Analysis, 2nd edition. Wiley, New York, 1984. | MR 771294 | Zbl 0083.14601
.[2] No eigenvalues outside the support of the limiting spectral distribution of large dimensional random matrices. Ann. Probab. 26 (1998) 316-345. | MR 1617051 | Zbl 0937.60017
and .[3] CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab. 32 (2004) 553-605. | MR 2040792 | Zbl 1063.60022
and .[4] On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 (2007) 1532-1572. | MR 2330979 | Zbl 1162.15012
, and .[5] Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2010. | MR 2567175 | Zbl 1301.60002
and .[6] Limiting behavior of eigenvectors of large Wigner matrices. J. Stat. Phys. 146 (2012) 519-549. | MR 2880031 | Zbl 1235.82035
and .[7] Eigenvectors of Wigner matrices: Universality of global fluctuations. Available at http://arxiv.org/abs/1104.1219.
.[8] Convergence of Probability Measures. Wiley, New York, 1968. | MR 233396 | Zbl 0944.60003
.[9] Truncations of Haar unitary matrices, traces and bivariate Brownian bridge. RMTA 1(1) (2012) 1150007. | MR 2930384 | Zbl 1247.15031
and .[10] On the distribution of the largest eigenvalue in principal component analysis. Ann. Statist. 29 (2001) 295-327. | MR 1863961 | Zbl 1016.62078
.[11] The limiting distriubtions of eigenvalues of sample correlation matrices. Sankhya 66 (2004) 35-48. | MR 2082906 | Zbl 1193.62018
.[12] Some limit theorems of the eigenvalues of sample convariance matrix. J. Multivariate Anal. 12 (1982) 1-38. | MR 650926 | Zbl 0491.62021
.[13] Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Related Fields 151 (2011) 233-264. | MR 2834718 | Zbl 1229.60009
and .[14] Distribution for some sets of random matrices. Math. USSR-Sb. 1 (1967) 457-483. | Zbl 0162.22501
and .[15] Central limit theorem for Hotelling’s statistic under large dimension. Ann. Appl. Probab. 21 (2011) 1860-1910. | MR 2884053 | Zbl 1250.62030
and .[16] Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab. 18 (2008) 1232-1270. | MR 2418244 | Zbl 1153.15315
and .[17] Universality of sample covariance matrices: CLT of the smoothed empirical spectral distribution. Preprint.
, and .[18] On the eigenvectors of large dimensional sample covariance matrices. J. Multivariate Anal. 30 (1989) 1-16. | MR 1003705 | Zbl 0678.60011
.[19] Strong convergence of the limiting distribution of the eigenvalues of large dimensional random matrices. J. Multivariate Anal. 55 (1995) 331-339. | MR 1370408 | Zbl 0851.62015
.[20] Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab. 18 (1990) 1174-1194. | MR 1062064 | Zbl 0708.62051
.[21] Random matrices: Universal properties of eigenvectors. Available at arXiv:1103.2801v2. | MR 2930379 | Zbl 1248.15031
and .[22] On the limit of the smallest eigenvalue of some sample covariance matrix. J. Theoret. Probab. 23 (2010) 1-20. | MR 2591901 | Zbl 1185.62098
and .[23] On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. Theory Related Fields 78 (1988) 509-521. | MR 950344 | Zbl 0627.62022
, and .