Nous considérons un processus de branchement dans un environnement aléatoire dont la distribution des enfants des individus varie aléatoirement de façon indépendante d'une génération à l'autre. Dans le régime sous critique, une transition de phase apparaît. Cet article est consacré à l'étude de la région proche de la transition. Nous étudions le comportement asymptotique de la probabilité de survie ainsi que la taille de la population et la forme de l'environnement aléatoire sous la condition de non-extinction. Nous montrons finalement que conditionnée à la non-extinction, la population alterne des périodes de petite et de grande taille. Ce type de comportement apparaît sous la mesure moyennée uniquement dans ce régime sous critique proche de la transition.
For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment conditioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population sizes alternate. This kind of ‘bottleneck' behavior appears under the annealed approach only in the intermediately subcritical case.
@article{AIHPB_2014__50_2_602_0, author = {Afanasyev, V. I. and B\"oinghoff, Ch. and Kersting, G. and Vatutin, V. A.}, title = {Conditional limit theorems for intermediately subcritical branching processes in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {602-627}, doi = {10.1214/12-AIHP526}, mrnumber = {3189086}, zbl = {1290.60083}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_2_602_0} }
Afanasyev, V. I.; Böinghoff, Ch.; Kersting, G.; Vatutin, V. A. Conditional limit theorems for intermediately subcritical branching processes in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 602-627. doi : 10.1214/12-AIHP526. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_2_602_0/
[1] Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., MSU, Moscow, 1980.
.[2] Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment. Discrete Math. Appl. 11 (2001) 105-131. | MR 1846044 | Zbl 1045.60087
.[3] Limit theorems for weakly subcritical branching processes in random environment. J. Theoret. Probab. 25 (2012) 703-732. | MR 2956209 | Zbl 1262.60083
, , and .[4] Criticality for branching processes in random environment. Ann. Probab. 33 (2005) 645-673. | MR 2123206 | Zbl 1075.60107
, , and .[5] Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process. Appl. 115 (2005) 1658-1676. | MR 2165338 | Zbl 1080.60079
, , and .[6] On the extinction times of varying and random environment branching processes. J. Appl. Probab. 12 (1975) 39-46. | MR 365733 | Zbl 0306.60052
.[7] On branching processes with random environments: I, II. Ann. Math. Stat. 42 (1971) 1499-1520, 1843-1858. | Zbl 0228.60033
and .[8] Upper large deviations for branching processes in random environment with heavy tails. Electron. J. Probab. 16 (2011) 1900-1933. | MR 2851050 | Zbl 1245.60081
and .[9] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR 1406564 | Zbl 0938.60005
.[10] On conditioning a random walk to stay non-negative. Ann. Probab. 22 (1994) 2152-2167. | MR 1331218 | Zbl 0834.60079
and .[11] Regular Variation. Cambridge Univ. Press, Cambridge, 1987. | MR 898871 | Zbl 0667.26003
, and .[12] Branching processes in random environment - A view on critical and subcritical cases. In Proceedings of the DFG-Schwerpunktprogramm Interacting Stochastic Systems of High Complexity 269-291. Springer, Berlin, 2005. | MR 2118578 | Zbl 1084.60062
, and .[13] Upper large deviations of branching processes in a random environment - Offspring distributions with geometrically bounded tails. Stochastic Process. Appl. 120 (2010) 2064-2077. | MR 2673988 | Zbl 1198.60045
and .[14] Simulations and a conditional limit theorem for intermediately subcritcal branching processes in random environment. Preprint, 2012. Available at arXiv:1209.1274. | Zbl 1288.60107
and .[15] Invariance principles for random walks conditioned to stay positive. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 170-190. | Numdam | MR 2451576 | Zbl 1175.60029
and .[16] Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121 (1997) 377-403. | MR 1465814 | Zbl 0882.60074
.[17] Growing conditioned trees. Stochastic Process. Appl. 39 (1991) 117-130. | MR 1135089 | Zbl 0747.60077
, and .[18] On the survival probability of a branching process in a finite state i.i.d. environment. Stochastic Process. Appl. 27 (1988) 151-157. | MR 934535 | Zbl 0634.60072
.[19] Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. verw. Gebiete 70 (1985) 351-360. | MR 803677 | Zbl 0573.60063
.[20] Elementary new proofs of classical limit theorems for Galton-Watson processes. J. Appl. Probab. 36 (1999) 301-309. | MR 1724856 | Zbl 0942.60071
.[21] Limit theorems for subcritical branching processes in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 39 (2003) 593-620. | Numdam | MR 1983172 | Zbl 1038.60083
, and .[22] Propriétés asymptotiques des processus de branchement en environnement aléatoire. C. R. Math. Acad. Sci. Paris Sér. I 332 (2001) 339-344. | Zbl 0988.60080
and .[23] Stability of critical cluster fields. Math. Nachr. 77 (1977) 7-43. | MR 443078 | Zbl 0361.60058
.[24] On large deviations of branching processes in a random environment: Geometric distribution of descendants. Discrete Math. Appl. 16 (2006) 155-174. | MR 2283329 | Zbl 1126.60089
.[25] On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny. Theory Probab. Appl. 54 (2010) 424-446. | MR 2766343 | Zbl 1213.60162
.[26] Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab. 23 (1995) 1125-1138. | MR 1349164 | Zbl 0840.60077
, and .[27] Erasing a branching tree. Adv. Appl. Probab. 18 (1986) 101-108. | MR 868511 | Zbl 0613.60078
.[28] On branching processes in random environments. Ann. Math. Stat. 40 (1969) 814-827. | MR 246380 | Zbl 0184.21103
and .[29] Time reversal of random walks in one dimension. Tokyo J. Math. 12 (1989) 159-174. | MR 1001739 | Zbl 0692.60052
.[30] A limit theorem for an intermediate subcritical branching process in a random environment. Theory Probab. Appl. 48 (2004) 481-492. | MR 2141345 | Zbl 1068.60096
.[31] Galton-Watson branching processes in random environment. I: Limit theorems. Theory Probab. Appl. 48 (2004) 314-336. | MR 2015453 | Zbl 1079.60080
and .[32] Galton-Watson branching processes in random environment. II: Finite-dimensional distributions. Theory Probab. Appl. 49 (2005) 275-308. | MR 2144298 | Zbl 1091.60037
and .[33] Branching processes in random environment and the bottlenecks in the evolution of populations. Theory Probab. Appl. 51 (2007) 189-210. | MR 2324164 | Zbl 1114.60085
and .