Minimal supersolutions of BSDEs with lower semicontinuous generators
Heyne, Gregor ; Kupper, Michael ; Mainberger, Christoph
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014), p. 524-538 / Harvested from Numdam

Nous étudions des sur-solutions minimales d'équations stochastiques rétrogrades. Nous montrons l'existence et l'unicité de telles sur-solutions minimales lorsque le générateur est conjointement semi-continu inférieurement, minoré par une fonction affine de la variable de contrôle et satisfait une condition spécifique de normalisation. Le résultat principal est obtenu en utilisant une convergence de semi-martingales.

We study minimal supersolutions of backward stochastic differential equations. We show the existence and uniqueness of the minimal supersolution, if the generator is jointly lower semicontinuous, bounded from below by an affine function of the control variable, and satisfies a specific normalization property. Semimartingale convergence is used to establish the main result.

Publié le : 2014-01-01
DOI : https://doi.org/10.1214/12-AIHP523
Classification:  60H20,  60H30
@article{AIHPB_2014__50_2_524_0,
     author = {Heyne, Gregor and Kupper, Michael and Mainberger, Christoph},
     title = {Minimal supersolutions of BSDEs with lower semicontinuous generators},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {50},
     year = {2014},
     pages = {524-538},
     doi = {10.1214/12-AIHP523},
     mrnumber = {3189083},
     zbl = {1296.60173},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_2_524_0}
}
Heyne, Gregor; Kupper, Michael; Mainberger, Christoph. Minimal supersolutions of BSDEs with lower semicontinuous generators. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 524-538. doi : 10.1214/12-AIHP523. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_2_524_0/

[1] K. Bahlali, E. Essaky and M. Hassani. Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs. C. R. Math. Acad. Sci. Paris 348 (2010) 677-682. | MR 2652497 | Zbl 1202.60094

[2] M. Barlow and P. E. Protter. On convergence of semimartingales. In Séminaire de Probabilités XXIV 188-193. Lect. Notes Math. 1426. Springer, Berlin, 1988/1989. | Numdam | MR 1071540 | Zbl 0703.60041

[3] P. Cheridito and M. Stadje. Existence, minimality and approximation of solutions to BSDEs with convex drivers. Stochastic Process. Appl. 122 (2012) 1540-1565. | MR 2914762 | Zbl 1252.60053

[4] F. Delbaen and W. Schachermayer. A compactness principle for bounded sequences of martingales with applications. In Proceedings of the Seminar of Stochastic Analysis, Random Fields and Applications 133-173. Progress in Probability 45. Birkhäuser, Basel, 1996. | MR 1712239 | Zbl 0939.60024

[5] F. Delbaen, Y. Hu and X. Bao. Backward SDEs with superquadratic growth. Probab. Theory Related Fields 150 (2011) 145-192. | MR 2800907 | Zbl 1253.60072

[6] C. Dellacherie and P. A. Meyer. Probabilities and Potential. B: Theory of Martingales. North-Holland Mathematics Studies 72. North-Holland, Amsterdam, 1982. Translated from the French by J. P. Wilson. | MR 745449 | Zbl 0494.60002

[7] S. Drapeau, G. Heyne and M. Kupper. Minimal supersolutions of convex BSDEs. Ann. Probab. 41 (2013) 3973-4001. | MR 3161467 | Zbl 1284.60116

[8] N. El Karoui, S. Peng and M. C. Quenez. Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71. | MR 1434407 | Zbl 0884.90035

[9] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer, New York, 1991. | MR 1121940 | Zbl 0734.60060

[10] M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 (2000) 558-602. | MR 1782267 | Zbl 1044.60045

[11] E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55-61. | MR 1037747 | Zbl 0692.93064

[12] S. Peng. Backward SDE and related g-expectation. In Backward Stochastic Differential Equation 141-159. Pitman Research Notes in Mathematics Series 364. Longman, Harlow, 1997. | MR 1752680 | Zbl 0892.60066

[13] S. Peng. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer's type. Probab. Theory Related Fields 113 (1999) 473-499. | MR 1717527 | Zbl 0953.60059

[14] S. Peng and M. Xu. The smallest g-supermartingale and reflected BSDE with single and double L 2 obstacles. Ann. Inst. Henri Poincaré Probab. Stat. 41 (2005) 605-630. | Numdam | MR 2139035 | Zbl 1071.60049

[15] P. E. Protter. Stochastic Integration and Differential Equations, 2nd edition. Springer, Berlin, 2005. Version 2.1, Corrected third printing. | MR 2273672 | Zbl 0694.60047

[16] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Fundamental Principles of Mathematical Sciences 293. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006