Nous obtenons la limite hydrodynamique trempée, sous un changement d’échelle hyperbolique, pour un système de particules attractif sur en milieu aléatoire ergodique, avec un nombre borné de particules par site. Notre résultat est une loi forte des grands nombres. Nous l’illustrons sur différents exemples.
We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.
@article{AIHPB_2014__50_2_403_0, author = {Bahadoran, C. and Guiol, H. and Ravishankar, K. and Saada, Ellen}, title = {Euler hydrodynamics for attractive particle systems in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {403-424}, doi = {10.1214/12-AIHP510}, mrnumber = {3189077}, zbl = {1294.60116}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_2_403_0} }
Bahadoran, C.; Guiol, H.; Ravishankar, K.; Saada, E. Euler hydrodynamics for attractive particle systems in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 403-424. doi : 10.1214/12-AIHP510. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_2_403_0/
[1] Invariant measures for the zero range process. Ann. Probab. 10 (1982) 525-547. | MR 659526 | Zbl 0492.60096
.[2] Hydrodynamic equations for attractive particle systems on . J. Stat. Phys. 47 (1987) 265-288. Correction to: “Hydrodynamic equations for attractive particle systems on ”. J. Stat. Phys. 113 (2003) 379-380. | MR 892931 | Zbl 0685.58043
and .[3] A constructive approach to Euler hydrodynamics for attractive particle systems 99 (2002) 1-30. | MR 1894249 | Zbl 1058.60084
, , and .[4] Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab. 34 (2006) 1339-1369. | MR 2257649 | Zbl 1101.60075
, , and .[5] Strong hydrodynamic limit for attractive particle systems on . Electron. J. Probab. 15 (2010) 1-43. | MR 2578381 | Zbl 1193.60113
, , and .[6] Asymmetric processes with random rates. Stoch. Process. Appl. 61 (1996) 181-204. | MR 1386172 | Zbl 0849.60093
, and .[7] Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab. 30 (2002) 1082-1130. | MR 1920102 | Zbl 1042.60062
and .[8] Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70 (1985) 509-523. | MR 807334 | Zbl 0554.60097
.[9] Realizable monotonicity for continuous-time Markov processes. Stochastic Process. Appl. 120 (2010) 959-982. | MR 2610334 | Zbl 1200.60064
, and .[10] Bose-Einstein condensation in disordered exclusion models and relation to traffic flow. Europhys. Lett. 36 (1996) 13-18. DOI:10.1209/epl/i1996-00180-y.
.[11] Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields 13 (2007) 519-542. | MR 2357386 | Zbl 1144.60058
.[12] Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields 127 (2003) 535-608. | MR 2021195 | Zbl 1052.60083
and .[13] Stochastic monotonicity and realizable monotonicity. Ann. Probab. 29 (2001) 938-978. | MR 1849183 | Zbl 1015.60010
and .[14] Hydrodynamics in a symmetric random medium. Comm. Math. Phys. 125 (1989) 13-25. | MR 1017736 | Zbl 0682.76001
.[15] Couplings, attractiveness and hydrodynamics for conservative particle systems. Ann. Inst. H. Poincaré Probab. Statist. 46 (2010) 1132-1177. | Numdam | MR 2744889 | Zbl 1252.60093
and .[16] Scaling limits for gradient systems in random environment. J. Stat. Phys. 131 (2008) 691-716. | MR 2398949 | Zbl 1144.82043
and .[17] Some properties of -step exclusion processes. J. Stat. Phys. 94 (1999) 495-511. | MR 1675362 | Zbl 0953.60091
.[18] Hydrodynamic limit of the exclusion process in inhomogeneous media. In Dynamics, Games and Science II 449-465. M. M. Peixoto, A. A. Pinto and D. A. Rand (Eds). Springer Proceedings in Mathematics 2. Springer, Heidelberg, 2011. | MR 2883297 | Zbl pre06078295
.[19] Stochastic partial ordering. Ann. Probab. 6 (1978) 1044-1049. | MR 512419 | Zbl 0392.60012
and .[20] Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002
and .[21] Hydrodynamic behavior of symmetric zero-range processes with random rates. Stochastic Process. Appl. 84 (1999) 297-312. | MR 1719270 | Zbl 0996.60108
.[22] Coupling the simple exclusion process. Ann. Probab. 4 (1976) 339-356. | MR 418291 | Zbl 0339.60091
.[23] Interacting Particle Systems. Classics in Mathematics, Reprint of first edition. Springer, Berlin, 2005. | MR 2108619 | Zbl 1103.82016
.[24] Macroscopic stability for nonfinite range kernels. Braz. J. Probab. Stat. 24 (2010) 337-360. | MR 2643570 | Zbl 1195.82058
, and .[25] Symmetric random walk in random environment in one dimension. Period. Math. Hungar. 45 (2002) 101-120. | MR 1955197 | Zbl 1064.60202
.[26] Bulk diffusion in a system with site disorder. Ann. Probab. 34 (2006) 1990-2036. | MR 2271489 | Zbl 1104.60066
.[27] Hydrodynamic limit for attractive particle systems on . Comm. Math. Phys. 140 (1991) 417-448. | MR 1130693 | Zbl 0738.60098
.[28] Existence of hydrodynamics for the totally asymmetric simple -exclusion process. Ann. Probab. 27 (1999) 361-415. | MR 1681094 | Zbl 0947.60088
.[29] Hydrodynamics and Platoon formation for a totally asymmetric exclusion model with particlewise disorder. J. Stat. Phys. 95 (1999) 525-567. | MR 1700871 | Zbl 0964.82041
and .[30] Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge, 1999. Translated from the 1996 French original by I. N. Sneddon. | MR 1707279 | Zbl 0930.35001
.[31] The existence of probability measures with given marginals. Ann. Math. Statist. 36 (1965) 423-439. | MR 177430 | Zbl 0135.18701
.