Nous considérons une marche aléatoire branchant catalytique sur qui ne branche qu’à l’origine. Dans le cas surcritique, nous établissons une loi des grands nombres pour la position maximale : Il existe une constante explicite telle que presque sûrement sur l’ensemble des trajectoires pour lesquelles l’origine est visitée une infinité de fois. Ensuite, nous déterminons toutes les lois limites possibles, lorsque , pour la suite .
We consider a catalytic branching random walk on that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position : For some constant , almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for as goes to infinity.
@article{AIHPB_2014__50_2_327_0, author = {Carmona, Philippe and Hu, Yueyun}, title = {The spread of a catalytic branching random walk}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {327-351}, doi = {10.1214/12-AIHP529}, mrnumber = {3189074}, zbl = {1291.60208}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_2_327_0} }
Carmona, Philippe; Hu, Yueyun. The spread of a catalytic branching random walk. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 327-351. doi : 10.1214/12-AIHP529. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_2_327_0/
[1] Convergence in law of the minimum of a branching random walk. Preprint. Ann. Probab. To appear. Available at http://arxiv.org/abs/1101.1810. | MR 3098680 | Zbl 1285.60086
.[2] Weak convergence for the minimal position in a branching random walk: A simple proof. Period. Math. Hungar. 61(1-2) (2010) 43-54. | MR 2728431 | Zbl 1240.60227
and .[3] Branching random walk in a catalytic medium. I. Basic equations. Positivity 4(1) (2000) 41-100. | MR 1740207 | Zbl 0953.60079
and .[4] Asymptotics of branching symmetric random walk on the lattice with a single source. C. R. Acad. Sci. Paris Sér. I Math. 326(8) (1998) 975-980. | MR 1649878 | Zbl 0917.60080
, and .[5] Erratum: “Asymptotics of branching symmetric random walk on the lattice with a single source”. C. R. Acad. Sci. Paris Sér. I Math. 327(6) (1998) 585. | MR 1650599 | Zbl 0917.60080
, and .[6] Branching Processes. Dover, Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York; MR0373040]. | MR 373040 | Zbl 1070.60001
and .[7] The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential. Statist. Probab. Lett. 80(17-18) (2010) 1442-1446. | MR 2669786 | Zbl 1196.60144
, , and .[8] Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25-37. | MR 433619 | Zbl 0356.60053
.[9] Measure change in multitype branching. Adv. in Appl. Probab. 36(2) (2004) 544-581. | MR 2058149 | Zbl 1056.60082
and .[10] Moment analysis of a branching random walk on a lattice with a single source. Dokl. Akad. Nauk 363(4) (1998) 439-442. | MR 1702745 | Zbl 0963.60083
and .[11] Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 (1978) 89-108. | MR 510529 | Zbl 0373.60089
.[12] A large deviation theory via the renewal theorem. Note, 2005. Available at http://www.math.sciences.univ-nantes.fr/~carmona/renewaldp.pdf.
.[13] On systems of renewal equations. J. Math. Anal. Appl. 30 (1970) 425-434. | MR 257678 | Zbl 0198.22502
.[14] Renewal theorem for a system of renewal equations. Ann. Inst. Henri Poincaré Probab. Stat. 39 (2003) 823-838. | Numdam | MR 1997214 | Zbl 1021.60069
.[15] Large Deviations Techniques and Applications. Stoch. Model. Appl. Probab. 38. Springer, Berlin, 2010. Corrected reprint of the second (1998) edition. | MR 2571413 | Zbl 1177.60035
and .[16] Catalytic branching processes via spine techniques and renewal theory. Preprint, 2011. Available at http://arxiv.org/abs/1106.5428. | Zbl pre06234279
and .[17] An application of renewal theorems to exponential moments of local times. Electron. Commun. Probab. 15 (2010), 263-269. | MR 2658973 | Zbl 1226.60103
and .[18] An Introduction to Probability Theory and Its Applications, Vol. I. Wiley, New York, 1950. | MR 38583 | Zbl 0039.13201
.[19] An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. | MR 210154 | Zbl 0219.60003
.[20] A spine approach to branching diffusions with applications to -convergence of martingales. In Séminaire de Probabilités XLII 281-330, 2009. | MR 2599214 | Zbl 1193.60100
and .[21] Branching Brownian motion with an inhomogeneous breeding potential. Ann. Inst. Henri Poincaré Probab. Stat. 45(3) (2009) 793-801. | Numdam | MR 2548504 | Zbl 1183.60029
and .[22] The many-to-few lemma and multiple spines. Preprint, 2011. Available at http://arxiv.org/abs/1106.4761.
and .[23] Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2) (2009) 742-789. | MR 2510023 | Zbl 1169.60021
and .[24] Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab. 23(3) (1995) 1125-1138. | MR 1349164 | Zbl 0840.60077
, and .[25] Random Walks of Infinitely Many Particles. World Scientific, River Edge, NJ, 1994. | MR 1645302 | Zbl 0841.60053
.[26] Branching random walks. Saint-Flour summer's course, 2012.
.[27] Individuals at the origin in the critical catalytic branching random walk. In Discrete Random Walks (Paris, 2003) 325-332 (electronic). Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003. | MR 2042398 | Zbl 1034.60078
and .[28] Two-dimensional limit theorem for a critical catalytic branching random walk. In Mathematics and Computer Science III 387-395. Birkhäuser, Basel, 2004. | MR 2090528 | Zbl 1062.60091
and .[29] A limit theorem for critical catalytic branching random walks. Teor. Veroyatn. Primen. 49(3) (2004), 461-484. | MR 2144864 | Zbl 1093.60062
and .[30] Catalytic branching random walks and queueing systems with a random number of independently operating servers. Teor. Ĭmovīr. Mat. Stat. 69 (2003) 1-15. | MR 2110900 | Zbl 1097.60068
, and .