Dans cet article, nous considérons le modèle suivant de marches auto-évitantes : la probabilité d’une trajectoire auto-évitante entre deux points fixés d’un sous-domaine fini de est proportionnelle à . Lorsque le paramètre est supercritique (i.e. ou est la constante de connectivité du réseau), nous prouvons que la trajectoire aléatoire remplit l’espace lorsque l’on considère la limite d’échelle du modèle.
In this article, we consider the following model of self-avoiding walk: the probability of a self-avoiding trajectory between two points on the boundary of a finite subdomain of is proportional to . When is supercritical (i.e. where is the connective constant of the lattice), we show that the random trajectory becomes space-filling when taking the scaling limit.
@article{AIHPB_2014__50_2_315_0, author = {Duminil-Copin, Hugo and Kozma, Gady and Yadin, Ariel}, title = {Supercritical self-avoiding walks are space-filling}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {315-326}, doi = {10.1214/12-AIHP528}, mrnumber = {3189073}, zbl = {1292.60096}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_2_315_0} }
Duminil-Copin, Hugo; Kozma, Gady; Yadin, Ariel. Supercritical self-avoiding walks are space-filling. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 315-326. doi : 10.1214/12-AIHP528. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_2_315_0/
[1] Lectures on self-avoiding-walks. In Probability and Statistical Physics in Two and More Dimensions 395-467. D. Ellwood, C. Newman, V. Sidoravicius and W. Werner (Eds). Clay Math. Proc. 15. Amer. Math. Soc., Providence, RI, 2012. Available at arXiv:1109.1549. | MR 3025395
, , and .[2] The strong interaction limit of continuous-time weakly self-avoiding walk. Preprint. Available at arXiv:1104.3731. | Zbl 1246.82042
, and .[3] Functional integral representations for self-avoiding walk. Probab. Surv. 6 (2009) 34-61. Available at i-journals.org. | MR 2525670 | Zbl 1193.82014
, and .[4] Renormalisation group analysis of weakly self-avoiding walk in dimensions four and higher. In Proceedings of the International Congress of Mathematicians 2232-2257. Hindustian Book Agency, New Delhi. Available at arXiv:1003.4484. | MR 2827969 | Zbl 1230.82028
and .[5] Self-avoiding walk in or more dimensions. Comm. Math. Phys. 97(1-2) (1985) 125-148. Available at projecteuclid.org. | MR 782962 | Zbl 0575.60099
and .[6] Self-avoiding walk is sub-ballistic. Preprint. Available at arXiv:1205.0401. | MR 3117515 | Zbl 1277.82027
and .[7] The connective constant of the honeycomb lattice equals . Ann. of Math. (2) 175(3) (2012) 1653-1665. | MR 2912714 | Zbl 1253.82012
and .[8] Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953.
.[9] Percolation. Springer, Berlin, 1999. | MR 1707339 | Zbl 0926.60004
.[10] Further results on the rate of convergence to the connective constant of the hypercubical lattice. Quart. J. Math. Oxford Ser. (2) 13 (1962) 108-110. Available at oxfordjournals.org. | MR 139535 | Zbl 0123.00304
and .[11] Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Amer. Math. Soc. (N.S.) 25(2) (1991) 417-423. Available at ams.org. | MR 1093059 | Zbl 0728.60103
and .[12] Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147(1) (1992) 101-136. Available at projecteuclid.org. | MR 1171762 | Zbl 0755.60053
and .[13] The normal number of prime factors of a number . Quart. J. Pure Appl. Math. 48 (1917) 76-92. | JFM 46.0262.03
and .[14] Ornstein-Zernike behaviour and analyticity of shapes for self-avoiding walks on . Markov Process. Related Fields 4(3) (1998) 323-350. | MR 1670027 | Zbl 0924.60086
.[15] On the scaling limit of planar self-avoiding walk. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2 339-364. Proc. Sympos. Pure Math. 72. Amer. Math. Soc., Providence, RI, 2004. Available at arXiv:math/0204277. | MR 2112127 | Zbl 1069.60089
, and .[16] The Self-Avoiding Walk. Probability and Its Applications. Birkhäuser, Boston, MA, 1993. | MR 1197356 | Zbl 0872.60076
and .[17] Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians, Vol. II 1421-1451. Eur. Math. Soc., Zürich, 2006. Available at arXiv:0708.0032. | MR 2275653 | Zbl 1112.82014
.