Limit theory for some positive stationary processes with infinite mean
Aaronson, Jon ; Zweimüller, Roland
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014), p. 256-284 / Harvested from Numdam

Nous prouvons des théorèmes limites et des lois du logarithme itéré unilatérales pour une classe de processus stochastiques positifs, mélangeants et stationnaires. Cette classe contient en particulier les processus obtenus par des observables nonintégrables de certaines applications dilatantes. Ceci est obtenu en généralisant la théorie de Darling-Kac à une famille appropriée de transformations préservant la mesure.

We prove stable limit theorems and one-sided laws of the iterated logarithm for a class of positive, mixing, stationary, stochastic processes which contains those obtained from nonintegrable observables over certain piecewise expanding maps. This is done by extending Darling-Kac theory to a suitable family of infinite measure preserving transformations.

Publié le : 2014-01-01
DOI : https://doi.org/10.1214/12-AIHP513
Classification:  60Fxx,  37A40,  60G10
@article{AIHPB_2014__50_1_256_0,
     author = {Aaronson, Jon and Zweim\"uller, Roland},
     title = {Limit theory for some positive stationary processes with infinite mean},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {50},
     year = {2014},
     pages = {256-284},
     doi = {10.1214/12-AIHP513},
     mrnumber = {3161531},
     zbl = {1291.60067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_1_256_0}
}
Aaronson, Jon; Zweimüller, Roland. Limit theory for some positive stationary processes with infinite mean. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 256-284. doi : 10.1214/12-AIHP513. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_1_256_0/

[1] J. Aaronson. An Introduction to Infinite Ergodic Theory. Am. Math. Soc., Providence, RI, 1997. | MR 1450400 | Zbl 0882.28013

[2] J. Aaronson. The asymptotic distributional behaviour of transformations preserving infinite measures. J. Anal. Math. 39 (1981) 203-234. | MR 632462 | Zbl 0499.28013

[3] J. Aaronson. Random f-expansions. Ann. Probab. 14 (1986) 1037-1057. | MR 841603 | Zbl 0658.60050

[4] J. Aaronson and M. Denker. Lower bounds for partial sums of certain positive stationary processes. In Almost Everywhere Convergence (Columbus, OH, 1988) 1-9. Academic Press, Boston, MA, 1989. | MR 1035234 | Zbl 0698.60023

[5] J. Aaronson and M. Denker. Upper bounds for ergodic sums of infinite measure preserving transformations. Trans. Amer. Math. Soc. 319 (1990) 101-138. | MR 1024766 | Zbl 0705.28007

[6] J. Aaronson and M. Denker. On the FLIL for certain ψ-mixing processes and infinite measure preserving transformations. C. R. Acad. Sci. Paris Sèr. I Math. 313 (1991) 471-475. | MR 1127942 | Zbl 0734.60033

[7] J. Aaronson, M. Denker, O. Sarig and R. Zweimüller. Aperiodicity of cocycles and conditional local limit theorems. Stoch. Dyn. 4 (2004) 31-62. | MR 2069366 | Zbl 1077.37010

[8] J. Aaronson and H. Nakada. On the mixing coefficients of piecewise monotonic maps. Israel J. Math. 148 (2005) 1-10. | MR 2191221 | Zbl 1085.37030

[9] N. H. Bingham. Limit theorems for occupation times of Markov processes. Z. Wahrsch. verw. Gebiete 17 (1971) 1-22. | MR 281255 | Zbl 0194.49503

[10] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1989. | MR 1015093 | Zbl 0667.26003

[11] R. C. Bradley Jr. On the ψ-mixing condition for stationary random sequences. Trans. Amer. Math. Soc. 276 (1983) 55-66. | MR 684493 | Zbl 0514.60041

[12] R. C. Bradley Jr. Introduction to Strong Mixing Conditions 1. Kendrick Press, Heber City, UT, 2007. | Zbl 1133.60001

[13] R. A. Davis. Stable limits for partial sums of dependent random variables. Ann. Probab. 11 (1983) 262-269. | MR 690127 | Zbl 0511.60021

[14] D. A. Darling and M. Kac. On occupation times for Markoff processes. Trans. Amer. Math. Soc. 84 (1957) 444-458. | MR 84222 | Zbl 0078.32005

[15] B. I. Korenblyum. On the asymptotic behavior of Laplace integrals near the boundary of a region of convergence. Dokl. Akad. Nauk SSSR (N.S.) 104 (1955) 173-176. | MR 74550

[16] M. Rychlik. Bounded variation and invariant measures. Studia Math. 76 (1983) 69-80. | MR 728198 | Zbl 0575.28011

[17] J. D. Samur. Convergence of sums of mixing triangular arrays of random vectors with stationary rows. Ann. Probab. 12 (1984) 390-426. | MR 735845 | Zbl 0542.60012

[18] M. Thaler. Transformations on [0,1] with infinite invariant measures. Israel J. Math. 46 (1983) 67-96. | MR 727023 | Zbl 0528.28011

[19] M. Thaler. The Dynkin-Lamperti arc-sine laws for measure preserving transformations. Trans. Amer. Math. Soc. 350 (1998) 4593-4607. | MR 1603998 | Zbl 0910.28014

[20] M. Thaler and R. Zweimüller. Distributional limit theorems in infinite ergodic theory. Probab. Theory Related Fields 135 (2006) 15-52. | MR 2214150 | Zbl 1085.37005

[21] M. J. Wichura. Functional laws of the iterated logarithm for the partial sums of iid random variables in the domain of attraction of a completely asymmetric stable law. Ann. Probab. 2 (1974) 1108-1138. | MR 358950 | Zbl 0325.60029

[22] R. Zweimüller. Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points. Nonlinearity 11 (1998) 1263-1276. | MR 1644385 | Zbl 0922.58039

[23] R. Zweimüller. Ergodic properties of infinite measure preserving interval maps with indifferent fixed points. Ergodic Theory Dynam. Sys. 20 (2000) 1519-1549. | MR 1786727 | Zbl 0986.37008

[24] R. Zweimüller. Infinite measure preserving transformations with compact first regeneration. J. Anal. Math. 103 (2007) 93-131. | MR 2373265 | Zbl 1152.28018

[25] R. Zweimüller. Measure preserving extensions and minimal wandering rates. Israel J. Math. 181 (2011) 295-303. | MR 2773043 | Zbl 1300.37008