Nous considérons un cadre non conventionnel de moyenne de la forme , où , est un processus stochastique ou un système dynamique suffisamment mélangeant tandis que , et , ont une croissance sur-linéaire. Nous montrons que le terme d’erreur après renormalisation est asymptotiquement gaussien.
We consider “nonconventional” averaging setup in the form , where , is either a stochastic process or a dynamical system with sufficiently fast mixing while , and , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.
@article{AIHPB_2014__50_1_236_0, author = {Kifer, Yuri}, title = {Nonconventional limit theorems in averaging}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {236-255}, doi = {10.1214/12-AIHP514}, mrnumber = {3161530}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_1_236_0} }
Kifer, Yuri. Nonconventional limit theorems in averaging. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 236-255. doi : 10.1214/12-AIHP514. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_1_236_0/
[1] Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math. 103 (1998) 111-124. | MR 1613556 | Zbl 0920.28011
.[2] Weakly mixing PET. Ergodic Theory Dynam. Systems 7 (1987) 337-349. | MR 912373 | Zbl 0645.28012
.[3] Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. Springer, Berlin, 1975. | MR 442989 | Zbl 0308.28010
.[4] A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 22 (1977) 482-497. | MR 517995 | Zbl 0412.60067
.[5] Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, 2007. | Zbl 1134.60004
.[6] From discrete-to continuous time ergodic theorems. Ergodic Theory Dynam. Systems. 32 (2012) 383-426. | MR 2901353 | Zbl 1251.37004
, and .[7] On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998) 357-390. | MR 1626749 | Zbl 0911.58029
.[8] Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2003) 1637-1689. | MR 2034323 | Zbl 1031.37031
.[9] Averaging and invariant measures. Mosc. Math. J. 5 (2005) 537-576. | MR 2241812 | Zbl pre05140621
.[10] Stochastic Processes. Wiley, New York, 1953. | MR 58896 | Zbl 0696.60003
.[11] Energy transfer in a fast-slow Hamiltonian system. Comm. Math. Phys. 308 (2011) 201-225. | MR 2842975 | Zbl 1235.82065
and .[12] Nonconventional ergodic averages. Proc. Sympos Pure Math. 50 (1990) 43-56. | MR 1067751 | Zbl 0711.28006
.[13] Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems 23 (2003) 87-110. | MR 1971198 | Zbl 1140.37315
, and .[14] Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. (2) 166 (2007) 269-291. | MR 2342697 | Zbl 1140.37004
, and .[15] Mixing properties and central limit theorem for a class of non-identical piecewise monotonic -transformations. Math. Nachr. 181 (1996) 185-214. | MR 1409076 | Zbl 0863.60023
.[16] Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. | MR 322926 | Zbl 0219.60027
and .[17] Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin, 2003. | MR 1943877 | Zbl 0635.60021
and .[18] On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11 (1966) 211-228. | MR 203788 | Zbl 0168.16002
.[19] A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 11 (1966) 390-406. | Zbl 0202.48601
.[20] Limit theorems in averaging for dynamical systems. Ergodic Theory Dynam. Systems 15 (1995) 1143-1172. | MR 1366312 | Zbl 0841.34048
.[21] Averaging principle for fully coupled dynamical systems and large deviations. Ergodic Theory Dynam. Systems 24 (2004) 847-871. | MR 2062922 | Zbl 1055.37025
.[22] Nonconventional law of large numbers and fractal dimensions of some multiple recurrence sets. Stoch. Dyn. 12 (2012) 1150023. | MR 2926580 | Zbl 1255.60044
.[23] A strong invariance principle for nonconventional sums. Probab. Theory Related Fields 155(1-2) (2013) 463-486. | MR 3010405 | Zbl 1271.60047
.[24] Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, Cambridge, 1995. | MR 1326374 | Zbl 0878.58019
and .[25] Nonconventional limit theorems in discrete and continuous time via martingales. Ann. Probab. To appear. | MR 3178470 | Zbl pre06288290
and .[26] Central limit theorems for deterministic systems. In International Conference on Dynamical Systems (Montevideo, 1995) 56-75. Pitman Research Notes in Math. 363. Longman, Harlow, 1996. | MR 1460797 | Zbl 0871.58055
.[27] Invariance principles for dependent variables. Z. Wahrsch. Verw. Gebiete 32 (1975) 165-178. | MR 388483 | Zbl 0288.60034
.[28] On the invariance principle for nonstationary mixingales. Ann. Probab. 5 (1977) 616-621. | MR 445583 | Zbl 0367.60021
.[29] Averaging Methods in Nonlinear Dynamical Systems, 2nd edition. Springer, New York, 2007. | MR 2316999 | Zbl 1128.34001
, and .