Soit une marche aléatoire centrée, nous considérons la suite de ses sommes partielles . Nous supposons que est dans le domaine d’attraction normale d’une loi -stable avec . En supposant que est soit exponentielle à droite (i.e. ), soit continue à droite (i.e. ), nous prouvons que quand , où dépend de la distribution de la marche. Nous considérons aussi une version conditionnelle de ce problème et nous étudions la positivité de ponts discrets intégrés.
Take a centered random walk and consider the sequence of its partial sums . Suppose is in the domain of normal attraction of an -stable law with . Assuming that is either right-exponential (i.e. for some and all ) or right-continuous (skip free), we prove that as , where depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.
@article{AIHPB_2014__50_1_195_0, author = {Vysotsky, Vladislav}, title = {Positivity of integrated random walks}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {195-213}, doi = {10.1214/12-AIHP487}, mrnumber = {3161528}, zbl = {1293.60053}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_1_195_0} }
Vysotsky, Vladislav. Positivity of integrated random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 195-213. doi : 10.1214/12-AIHP487. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_1_195_0/
[1] Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49(1) (2013) 236-251. | Numdam | MR 3060155 | Zbl 1285.60042
and .[2] Lévy Processes. Cambridge University Press, New York, 1996. | MR 1406564 | Zbl 0938.60005
.[3] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR 1700749 | Zbl 0172.21201
.[4] On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 (1976) 480-485. | MR 415702 | Zbl 0336.60024
.[5] Pinning and wetting transition for ()-dimensional fields with Laplacian interaction. Ann. Probab. 36 (2008) 2388-2433. | MR 2478687 | Zbl 1179.60066
and .[6] Persistence of iterated partial sums. Ann. Inst. Henri Poincaré Probab. Stat. 49(3) (2013) 873-884. | Numdam | MR 3112437 | Zbl 1274.60144
, and .[7] Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985) 351-360. | MR 803677 | Zbl 0573.60063
.[8] One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451-465. | MR 1440141 | Zbl 0883.60022
.[9] On the rate of convergence to a stable law. Theor. Probab. Appl. 25 (1980) 180-187. | MR 560073 | Zbl 0456.60020
.[10] An Introduction to Probability Theory and Its Applications 2. Wiley, New York, 1966. | MR 210154 | Zbl 0219.60003
.[11] Fluctuations of random walk in and storage systems. Adv. in Appl. Prob. 9 (1977) 566-587. | MR 464406 | Zbl 0376.60073
and .[12] Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. | MR 322926 | Zbl 0219.60027
and .[13] An asymptotic formula for the Kolmogorov Diffusion and a refinement of Sinai's estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A 70 (1994) 271-276. | MR 1313176 | Zbl 0820.60066
and .[14] Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas. Probab. Surveys 4 (2007) 80-145. | MR 2318402 | Zbl 1189.60147
.[15] Ratio theorems for random walks II. J. Anal. Math. 11 (1963) 323-379. | MR 163365 | Zbl 0121.35202
.[16] Persistence in nonequilibrium systems. Current Sci. 77 (1999) 370-375.
.[17] On the asymptotic behaviour of one-sided large deviation probabilities. Theory Probab. Appl. 26 (1982) 362-366. | Zbl 0481.60036
.[18] A bivariate stable characterization and domains of attraction. J. Multivariate Anal. 9 (1979) 206-221. | MR 538402 | Zbl 0409.62038
and .[19] A class of conditional limit theorems related to ruin problem. Ann. Probab. 11 (1983) 40-45. | MR 682799 | Zbl 0506.60066
.[20] Distribution of some functionals of the integral of a random walk. Theor. Math. Phys. 90 (1992) 219-241. | MR 1182301 | Zbl 0810.60063
.[21] Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009) 177-217. | MR 2449127 | Zbl 1158.60014
and .[22] Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab. 18 (2008) 1026-1058. | MR 2418237 | Zbl 1141.60068
.[23] On the probability that integrated random walks stay positive. Stochastic Process. Appl. 120 (2010) 1178-1193. | MR 2639743 | Zbl 1202.60070
.[24] One-Dimensional Stable Distributions. Amer. Math. Soc., Providence, RI, 1986. | MR 854867 | Zbl 0589.60015
.