Initial measures for the stochastic heat equation
Conus, Daniel ; Joseph, Mathew ; Khoshnevisan, Davar ; Shiu, Shang-Yuan
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014), p. 136-153 / Harvested from Numdam

Nous considérons une famille d’équations de la chaleur stochastique de la forme t u=u+σ(u)W ˙, où W ˙ est un bruit-blanc espace-temps, est le générateur d’un processus de Lévy symétrique sur 𝐑, et σ est une fonction lipschizienne s’annulant en 0. Nous montrons que cette équation aux dérivées partielles stochastique a une solution de type champ aléatoire pour toute mesure initiale finie u 0 . Nous obtenons également des bornes a priori sur les moments de la solution. Dans le cas particulier où f=cf '' pour un c>0, nous montrons que si u 0 est une mesure finie à support compact, la solution est presque sûrement une fonction bornée pour tout t>0.

We consider a family of nonlinear stochastic heat equations of the form t u=u+σ(u)W ˙, where W ˙ denotes space-time white noise, the generator of a symmetric Lévy process on 𝐑, and σ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure u 0 . Tight a priori bounds on the moments of the solution are also obtained. In the particular case that f=cf '' for some c>0, we prove that if u 0 is a finite measure of compact support, then the solution is with probability one a bounded function for all times t>0.

Publié le : 2014-01-01
DOI : https://doi.org/10.1214/12-AIHP505
Classification:  60H15,  35R60
@article{AIHPB_2014__50_1_136_0,
     author = {Conus, Daniel and Joseph, Mathew and Khoshnevisan, Davar and Shiu, Shang-Yuan},
     title = {Initial measures for the stochastic heat equation},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {50},
     year = {2014},
     pages = {136-153},
     doi = {10.1214/12-AIHP505},
     mrnumber = {3161526},
     zbl = {1288.60077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_1_136_0}
}
Conus, Daniel; Joseph, Mathew; Khoshnevisan, Davar; Shiu, Shang-Yuan. Initial measures for the stochastic heat equation. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 136-153. doi : 10.1214/12-AIHP505. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_1_136_0/

[1] L. Bertini and N. Cancrini. The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78 (1994) 1377-1402. | MR 1316109 | Zbl 1080.60508

[2] A. Borodin and I. Corwin. Macdonald processes. Preprint, 2012. Available at http://arxiv.org/abs/1111.4408. | MR 3204480 | Zbl pre06368514

[3] D. L. Burkholder. Martingale transforms. Ann. Math. Statist. 37 (1966) 1494-1504. | MR 208647 | Zbl 0306.60030

[4] D. L. Burkholder, B. J. Davis and R. F. Gundy. Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability II 223-240. Univ. California Press, Berkeley, CA, 1972. | MR 400380 | Zbl 0253.60056

[5] D. L. Burkholder and R. F. Gundy. Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 (1970) 249-304. | MR 440695 | Zbl 0223.60021

[6] E. Carlen and P. Kree. L p estimates for multiple stochastic integrals. Ann. Probab. 19 (1991) 354-368. | MR 1085341 | Zbl 0721.60052

[7] R. A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) vii + 129. | MR 1185878 | Zbl 0925.35074

[8] L. Chen and R. C. Dalang. Parabolic Anderson model driven by space-time white noise in 𝐑 1+1 with Schwartz distribution-valued initial data: Solutions and explicit formula for second moments. Preprint, 2011.

[9] D. Conus and D. Khoshnevisan. Weak nonmild solutions to some SPDEs. Illinois J. Math. 54(4) (2010) 1329-1341. | MR 2981850 | Zbl 1259.60067

[10] D. Conus, M. Joseph and D. Khoshnevisan. On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. To appear. Available at http://arxiv.org/abs/1104.0189. | MR 3098071 | Zbl 1286.60060

[11] R. C. Dalang. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999) Paper no. 6, 29 (electronic). | MR 1684157 | Zbl 0922.60056

[12] R. C. Dalang and C. Mueller. Some non-linear S.P.D.E.'s that are second order in time. Electron. J. Probab. 8 (2003) Paper no. 1, 21 (electronic). | MR 1961163 | Zbl 1013.60044

[13] B. Davis. On the L p norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976) 697-704. | MR 418219 | Zbl 0349.60061

[14] M. Foondun and D. Khoshnevisan. On the global maximum of the solution to a stochastic heat equation with compact-support initial data, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 895-907. | Numdam | MR 2744876 | Zbl 1210.35305

[15] M. Foondun and D. Khoshnevisan. Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J. Probab. 14 (2009) Paper no. 12, 548-568 (electronic). | MR 2480553 | Zbl 1190.60051

[16] M. Foondun, D. Khoshnevisan and E. Nualart. A local time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc. 363 (2011) 2481-2515. | MR 2763724 | Zbl 1225.60103

[17] I. M. Gel'Fand and N. Y. Vilenkin. Generalized Functions, Vol. 4: Applications of harmonic analysis. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977]. Translated from the Russian by Amiel Feinstein. | MR 173945 | Zbl 0144.17202

[18] I. Gyöngy and D. Nualart. On the stochastic Burgers' equation in the real line. Ann. Probab. 27 (1999) 782-802. | MR 1698967 | Zbl 0939.60058

[19] N. Jacob. Pseudo Differential Operators and Markov Processes, Vol. III. Imperial College Press, London, 2005. | MR 2158336 | Zbl 1076.60003

[20] M. Kardar. Roughening by impurities at finite temperatures. Phys. Rev. Lett. 55 (1985) 2923.

[21] M. Kardar, G. Parisi and Y.-C. Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889-892. | Zbl 1101.82329

[22] C. Mueller. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991) 225-245. | MR 1149348 | Zbl 0749.60057

[23] J. B. Walsh. An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour, XIV - 1984 265-439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. | MR 876085 | Zbl 0608.60060