Nous considérons une famille d’équations de la chaleur stochastique de la forme , où est un bruit-blanc espace-temps, est le générateur d’un processus de Lévy symétrique sur , et est une fonction lipschizienne s’annulant en . Nous montrons que cette équation aux dérivées partielles stochastique a une solution de type champ aléatoire pour toute mesure initiale finie . Nous obtenons également des bornes a priori sur les moments de la solution. Dans le cas particulier où pour un , nous montrons que si est une mesure finie à support compact, la solution est presque sûrement une fonction bornée pour tout .
We consider a family of nonlinear stochastic heat equations of the form , where denotes space-time white noise, the generator of a symmetric Lévy process on , and is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure . Tight a priori bounds on the moments of the solution are also obtained. In the particular case that for some , we prove that if is a finite measure of compact support, then the solution is with probability one a bounded function for all times .
@article{AIHPB_2014__50_1_136_0, author = {Conus, Daniel and Joseph, Mathew and Khoshnevisan, Davar and Shiu, Shang-Yuan}, title = {Initial measures for the stochastic heat equation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {136-153}, doi = {10.1214/12-AIHP505}, mrnumber = {3161526}, zbl = {1288.60077}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_1_136_0} }
Conus, Daniel; Joseph, Mathew; Khoshnevisan, Davar; Shiu, Shang-Yuan. Initial measures for the stochastic heat equation. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 136-153. doi : 10.1214/12-AIHP505. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_1_136_0/
[1] The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78 (1994) 1377-1402. | MR 1316109 | Zbl 1080.60508
and .[2] Macdonald processes. Preprint, 2012. Available at http://arxiv.org/abs/1111.4408. | MR 3204480 | Zbl pre06368514
and .[3] Martingale transforms. Ann. Math. Statist. 37 (1966) 1494-1504. | MR 208647 | Zbl 0306.60030
.[4] Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability II 223-240. Univ. California Press, Berkeley, CA, 1972. | MR 400380 | Zbl 0253.60056
, and .[5] Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 (1970) 249-304. | MR 440695 | Zbl 0223.60021
and .[6] estimates for multiple stochastic integrals. Ann. Probab. 19 (1991) 354-368. | MR 1085341 | Zbl 0721.60052
and .[7] Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) vii + 129. | MR 1185878 | Zbl 0925.35074
and .[8] Parabolic Anderson model driven by space-time white noise in with Schwartz distribution-valued initial data: Solutions and explicit formula for second moments. Preprint, 2011.
and .[9] Weak nonmild solutions to some SPDEs. Illinois J. Math. 54(4) (2010) 1329-1341. | MR 2981850 | Zbl 1259.60067
and .[10] On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. To appear. Available at http://arxiv.org/abs/1104.0189. | MR 3098071 | Zbl 1286.60060
, and .[11] Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999) Paper no. 6, 29 (electronic). | MR 1684157 | Zbl 0922.60056
.[12] Some non-linear S.P.D.E.'s that are second order in time. Electron. J. Probab. 8 (2003) Paper no. 1, 21 (electronic). | MR 1961163 | Zbl 1013.60044
and .[13] On the norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976) 697-704. | MR 418219 | Zbl 0349.60061
.[14] On the global maximum of the solution to a stochastic heat equation with compact-support initial data, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 895-907. | Numdam | MR 2744876 | Zbl 1210.35305
and .[15] Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J. Probab. 14 (2009) Paper no. 12, 548-568 (electronic). | MR 2480553 | Zbl 1190.60051
and .[16] A local time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc. 363 (2011) 2481-2515. | MR 2763724 | Zbl 1225.60103
, and .[17] Generalized Functions, Vol. 4: Applications of harmonic analysis. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977]. Translated from the Russian by Amiel Feinstein. | MR 173945 | Zbl 0144.17202
and .[18] On the stochastic Burgers' equation in the real line. Ann. Probab. 27 (1999) 782-802. | MR 1698967 | Zbl 0939.60058
and .[19] Pseudo Differential Operators and Markov Processes, Vol. III. Imperial College Press, London, 2005. | MR 2158336 | Zbl 1076.60003
.[20] Roughening by impurities at finite temperatures. Phys. Rev. Lett. 55 (1985) 2923.
.[21] Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889-892. | Zbl 1101.82329
, and .[22] On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991) 225-245. | MR 1149348 | Zbl 0749.60057
.[23] An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour, XIV - 1984 265-439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. | MR 876085 | Zbl 0608.60060
.