Dans ce papier nous étudions des bornes supérieures pour la densité d’une solution déquation différentielle conduite par un mouvement brownien fractionnaire d’indice de Hurst . Nous montrons, que sous certaines conditions géomètriques, dans le cas régulier , la densité de la solution satisfait l’inégalité de log-Sobolev, l’inégalité de concentration gaussienne et admet une borne supérieure gaullienne. Dans le cas et sous la même condition géomètrique, nous montrons que la densité est infiniment différentiable et admet une borne supérieure sous-gaussienne.
In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter . We show that under some geometric conditions, in the regular case , the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case and under the same geometric conditions, we show that the density of the solution is smooth and admits an upper sub-Gaussian bound.
@article{AIHPB_2014__50_1_111_0, author = {Baudoin, Fabrice and Ouyang, Cheng and Tindel, Samy}, title = {Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {50}, year = {2014}, pages = {111-135}, doi = {10.1214/12-AIHP522}, mrnumber = {3161525}, zbl = {1286.60051}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2014__50_1_111_0} }
Baudoin, Fabrice; Ouyang, Cheng; Tindel, Samy. Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) pp. 111-135. doi : 10.1214/12-AIHP522. http://gdmltest.u-ga.fr/item/AIHPB_2014__50_1_111_0/
[1] Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007) 550-574. | MR 2320949 | Zbl 1119.60043
and .[2] A version of Hörmander's theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 (2007) 373-395. | MR 2322701 | Zbl 1123.60038
and .[3] Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions. Stochastic. Process. Appl. 121 (2011) 759-792. | MR 2770906 | Zbl 1222.60034
and .[4] Work in progress. Preprint, 2012.
, , and .[5] Estimates for the solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter . Stoch. Dyn. 11 (2011) 243-263. | MR 2836524 | Zbl 1231.60049
and .[6] Martingale representation and logarithmic Sobolev inequality. Electron. Com. Probab. 2 (1997) 71-81. | MR 1484557 | Zbl 0890.60045
, and .[7] Densities for rough differential equations under Hörmander condition. Ann. Math. To appear. | MR 2680405 | Zbl 1205.60105
and .[8] Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc. 361 (2009) 3359-3371. | MR 2485431 | Zbl 1175.60034
, and .[9] Integrability estimates for Gaussian rough differential equations. Arxiv preprint, 2011. | Zbl 1278.60091
, and .[10] On inference for fractional differential equations. Arxiv preprint, 2011. | MR 3029332 | Zbl 1271.62197
and .[11] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR 1883719 | Zbl 1047.60029
and .[12] Potential theory for hyperbolic SPDEs. Ann. Probab. 32(3A) (2004) 2099-2148. | MR 2073187 | Zbl 1054.60066
and .[13] Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express. 2007 (2007) abm009. | MR 2387018 | Zbl 1163.34005
.[14] A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 48(2) (2012) 518-550. | Numdam | MR 2954265 | Zbl 1260.60135
, and .[15] Smoothness of density for the area process of fractional Brownian motion. Arxiv preprint, 2010. | Zbl 1268.60080
.[16] Multidimensional Stochastic Processes Seen as Rough Paths. Cambridge Univ. Press, Cambridge, 2010. | MR 2604669 | Zbl 1193.60053
and .[17] Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140. | MR 2091358 | Zbl 1058.60037
.[18] Rough evolution equations. Ann. Probab. 38 (2010) 1-75. | MR 2599193 | Zbl 1193.60070
and .[19] Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33 (2005) 703-758. | MR 2123208 | Zbl 1071.60045
.[20] Ergodicity theory of SDEs with extrinsic memory. Ann. Probab. 35 (2007) 1950-1977. | MR 2349580 | Zbl 1129.60052
and .[21] Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Preprint, 2011. | MR 3112925 | Zbl 1288.60068
and .[22] Stochastic Analysis on Manifolds. Graduate Series in Mathematics 38. Amer. Math. Soc., Providence, RI, 2002. | MR 1882015 | Zbl 0994.58019
.[23] Differential equations driven by Hölder continuous functions of order greater than . Abel Symp. 2 (2007) 349-413. | MR 2397797 | Zbl 1144.34038
and .[24] Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 (2004) 18.
and .[25] The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001. | MR 1849347 | Zbl 0995.60002
.[26] System Control and Rough Paths. Oxford Univ. Press, Oxford, 2002. | MR 2036784 | Zbl 1029.93001
and .[27] Large deviations for rough paths of the fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Stat. 42 (2006) 245-271. | Numdam | MR 2199801 | Zbl 1087.60035
and .[28] Trees and asymptotic developments for fractional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 157-174. | Numdam | MR 2500233 | Zbl 1172.60017
, , and .[29] Discretizing the Lévy area. Stochastic Process. Appl. 120 (2010) 223-254. | MR 2576888 | Zbl 1185.60076
, and .[30] The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer-Verlag, Berlin, 2006. | MR 2200233 | Zbl 0837.60050
.[31] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | Zbl 1018.60057
and .[32] Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119 (2009) 391-409. | MR 2493996 | Zbl 1169.60013
and .[33] Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103 (2009) 3.
and .[34] Quantitative analysis of single particle trajectories: Mean maximal excursion method. Biophysical J. 98 (2010) 1364-1372.
, , , , , , and .[35] Analysis on Wiener space and applications. Arxiv preprint, 2010.
.[36] Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. | MR 1640795 | Zbl 0918.60037
.