On étudie un modèle de compétition sur entre trois clusters et gouverné par la percolation dirigée de dernier passage. On montre que la coexistence, c’est à dire que les trois clusters sont infinis simultanément, a lieu avec probabilité . Dans ce cas, le cluster central admet une densité positive sur . Nos résultats reposent sur trois couplages qui permettent de relier les interfaces de compétitions (qui représentent les frontières entres les clusters) à certaines particules du multi-TASEP, ainsi qu’à des résultats récents sur la collision dans le multi-TASEP.
A competition model on between three clusters and governed by directed last passage percolation is considered. We prove that coexistence, i.e. the three clusters are simultaneously unbounded, occurs with probability . When this happens, we also prove that the central cluster almost surely has a positive density on . Our results rely on three couplings, allowing to link the competition interfaces (which represent the borderlines between the clusters) to some particles in the multi-TASEP, and on recent results about collision in the multi-TASEP.
@article{AIHPB_2012__48_4_973_0, author = {Coupier, David and Heinrich, Philippe}, title = {Coexistence probability in the last passage percolation model is $6-8\log 2$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {48}, year = {2012}, pages = {973-988}, doi = {10.1214/11-AIHP438}, mrnumber = {3052401}, zbl = {1261.60091}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2012__48_4_973_0} }
Coupier, David; Heinrich, Philippe. Coexistence probability in the last passage percolation model is $6-8\log 2$. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) pp. 973-988. doi : 10.1214/11-AIHP438. http://gdmltest.u-ga.fr/item/AIHPB_2012__48_4_973_0/
[1] The tasep speed process. Available at arXiv:0811.3706, 2008. | MR 2857238 | Zbl 1225.82039
, and .[2] Stochastic domination for the last passage percolation model. Markov Process. Related Fields 17 (2011) 37-48. | MR 2809552 | Zbl 1230.60102
and .[3] Collision probabilities in the rarefaction fan of asymmetric exclusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 1048-1064. | Numdam | MR 2572163 | Zbl 1196.60162
, and .[4] A phase transition for competition interfaces. Ann. Appl. Probab. 19 (2009) 281-317. | MR 2498679 | Zbl 1185.60109
, and .[5] Competition interfaces and second class particles. Ann. Probab. 33 (2005) 1235-1254. | MR 2150188 | Zbl 1078.60083
and .[6] Coexistence in two-type first-passage percolation models. Ann. Appl. Probab. 15 (2005) 298-330. | MR 2115045 | Zbl 1080.60092
and .[7] First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 (1998) 683-692. | MR 1659548 | Zbl 0920.60085
and .[8] Coexistence for Richardson type competing spatial growth models. Ann. Appl. Probab. 15 (2005) 739-747. | MR 2114988 | Zbl 1067.60098
.[9] Geodesics in first passage percolation. Ann. Appl. Probab. 18 (2008) 1944-1969. | MR 2462555 | Zbl 1153.60055
.[10] Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer-Verlag, Berlin, 1999. | MR 1717346 | Zbl 0949.60006
.[11] Last-passage percolation with general weight distribution. Markov Process. Related Fields 12 (2006) 273-299. | MR 2249632 | Zbl 1147.60059
.[12] The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab. 15 (2005) 1227-1259. | Zbl 1069.60091
and .[13] Nonequilibrium behaviour of a many particle process: Density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58 (1981) 41-53. | Zbl 0451.60097
.[14] Second class particles as microscopic characteristics in totally asymmetric nearest-neighbor -exclusion processes. Trans. Amer. Math. Soc. 353 (2001) 4801-4829 (electronic). | Zbl 0983.60093
.[15] Coupling, Stationarity, and Regeneration. Probability and its Applications (New York). Springer-Verlag, New York, 2000. | Zbl 0949.60007
.