Nous montrons que les mesures de Poisson sont invariantes par les transformations aléatoires qui préservent les mesures d'intensité, et dont le gradient aux différences finies satisfait une condition d'annulation cyclique. La preuve de ce résultat repose sur des identités de moments d'intérêt indépendant pour les intégrales stochastiques de Poisson adaptées et anticipantes, et est inspirée par la méthode de Üstünel et Zakai (Probab. Theory Related Fields 103 (1995) 409-429) sur l'espace de Wiener, bien que l'algèbre correspondante soit plus compliquée que dans le cas Wiener. Les exemples d'application incluent des transformations conditionnées par des ensembles aléatoires tels que l'enveloppe convexe d'une mesure aléatoire de Poisson.
We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields 103 (1995) 409-429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples of application include transformations conditioned by random sets such as the convex hull of a Poisson random measure.
@article{AIHPB_2012__48_4_947_0, author = {Privault, Nicolas}, title = {Invariance of Poisson measures under random transformations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {48}, year = {2012}, pages = {947-972}, doi = {10.1214/11-AIHP422}, mrnumber = {3052400}, zbl = {1278.60084}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2012__48_4_947_0} }
Privault, Nicolas. Invariance of Poisson measures under random transformations. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) pp. 947-972. doi : 10.1214/11-AIHP422. http://gdmltest.u-ga.fr/item/AIHPB_2012__48_4_947_0/
[1] A distributional approach to multiple stochastic integrals and transformations of the Poisson measure. Acta Appl. Math. 94 (2006) 1-19. | MR 2271674 | Zbl 1107.28010
and .[2] Stochastic Integration with Jumps. Encyclopedia of Mathematics and Its Applications 89. Cambridge Univ. Press, Cambridge, 2002. | MR 1906715 | Zbl 1002.60001
.[3] Numerical Methods in Finance and Economics, second edition. Statistics in Practice. Wiley-Interscience, Hoboken, NJ, 2006. | MR 2255817 | Zbl 1129.91002
.[4] Point Processes and Queues, Martingale Dynamics. Springer, New York, 1981. | MR 636252 | Zbl 0478.60004
.[5] Les fonctions quasi analytiques. Gauthier-Villars, Éditeur, Paris, 1926. | JFM 52.0255.02
.[6] Enumerative combinatorics. CRC Press Series on Discrete Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002. | Zbl 1001.05001
.[7] On the convex hulls of point processes. Manuscript, 2000.
and .[8] Calcul stochastique non adapté par rapport à la mesure de Poisson. In Séminaire de Probabilités XXII 477-484. Lecture Notes in Math. 1321. Springer, Berlin, 1988. | Numdam | MR 960543 | Zbl 0653.60045
, and .[9] Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin, 2009.
, and .[10] Generalized Poisson functionals. Probab. Theory Related Fields 77 (1988) 1-28. | MR 921816 | Zbl 0617.60035
.[11] Limit Theorems for Stochastic Processes, second edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. | MR 1943877 | Zbl 1018.60002
and .[12] Formules de dualité sur l'espace de Poisson. Ann. Inst. Henri Poincaré Probab. Stat. 32 (1996) 509-548. | Numdam | MR 1411270 | Zbl 0859.60045
.[13] Girsanov theorem for anticipative shifts on Poisson space. Probab. Theory Related Fields 104 (1996) 61-76. | MR 1367667 | Zbl 0838.60038
.[14] Moment identities for Poisson-Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris 347 (2009) 1071-1074. | MR 2554579 | Zbl 1179.60035
.[15] Moment identities for Skorohod integrals on the Wiener space and applications. Electron. Commun. Probab. 14 (2009) 116-121 (electronic). | MR 2481671 | Zbl 1189.60113
.[16] Stochastic Analysis in Discrete and Continuous Settings. Lecture Notes in Math. 1982. Springer, Berlin, 2009. | MR 2531026 | Zbl 1185.60005
.[17] Generalized Bell polynomials and the combinatorics of Poisson central moments. Electron. J. Combin. 18 (2011) P54. | MR 2776830 | Zbl 1215.11017
.[18] Poisson stochastic integration in Hilbert spaces. Ann. Math. Blaise Pascal 6 (1999) 41-61. | Numdam | MR 1735278 | Zbl 1158.60351
and .[19] The Problem of Moments. American Mathematical Society Mathematical Surveys II. Amer. Math. Soc., New York, 1943. | MR 8438 | Zbl 0063.06973
and .[20] Absolute continuity of Poisson random fields. Publ. Res. Inst. Math. Sci. 26 (1990) 629-647. | MR 1081507 | Zbl 0738.60040
.[21] Analyse de rotations aléatoires sur l'espace de Wiener. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 1069-1073. | MR 1305678 | Zbl 0810.60001
and .[22] Random rotations of the Wiener path. Probab. Theory Related Fields 103 (1995) 409-429. | MR 1358084 | Zbl 0832.60052
and .[23] Transformation of Measure on Wiener Space. Springer Monogr. Math. Springer, Berlin, 2000. | MR 1736980 | Zbl 0974.46044
and .[24] Representations of the group of diffeomorphisms. Uspekhi Mat. Nauk 30 (1975) 1-50. | Zbl 0337.58003
, and .[25] Stopping sets: Gamma-type results and hitting properties. Adv. in Appl. Probab. 31 (1999) 355-366. | MR 1724557 | Zbl 0947.60053
.