Nous considérons un modèle d'interfaces de type gradient indexé par le réseau avec une interaction donnée par la pertubation non convexe d'un potentiel convexe. En utilisant une technique qui découple les sites pairs et impairs, nous démontrons pour une classe de potentiels non convexes l'unicité de la composante ergodique, de la mesure de Gibbs du gradient, la décroissance des covariances, la loi limite centrale et la stricte convexité de la tension superficielle.
We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for -Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.
@article{AIHPB_2012__48_3_819_0, author = {Cotar, Codina and Deuschel, Jean-Dominique}, title = {Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {48}, year = {2012}, pages = {819-853}, doi = {10.1214/11-AIHP437}, mrnumber = {2976565}, zbl = {1247.60133}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2012__48_3_819_0} }
Cotar, Codina; Deuschel, Jean-Dominique. Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) pp. 819-853. doi : 10.1214/11-AIHP437. http://gdmltest.u-ga.fr/item/AIHPB_2012__48_3_819_0/
[1] Unpublished manuscript.
, and .[2] Phase coexistence of gradient Gibbs states. Probab. Theory Related Fields 139 (2007) 1-39. | MR 2322690 | Zbl 1120.82003
and .[3] Scaling limit for a class of gradient fields with non-convex potentials. Ann. Probab. 39 (2011) 224-251. | MR 2778801 | Zbl 1222.60076
and .[4] The ergodic theorem for additive cocycles of or . Ergodic Theory Dynam. Systems 11 (1991) 19-39. | MR 1101082 | Zbl 0723.60008
and .[5] The statistical mechanics of anharmonic lattices. In Proceedings of the 40th Session of the International Statistics Institute 393-404. 1975. | MR 676341 | Zbl 0357.60051
, and .[6] Lectures on the renormalization group. In Statistical Mechanics 7-93. S. Sheffield and T. Spencer (Eds). IAS/Park City Mathematics Ser. Amer. Math. Soc., Provodence, RI, 2009. | MR 2523458 | Zbl 1186.82033
.[7] Grad perturbations of massless Gaussian fields. Comm. Math. Phys. 129 (1990) 351-392. | MR 1048698 | Zbl 0705.60101
and .[8] Strict convexity of the free energy for non-convex gradient models at moderate . Comm. Math. Phys. 286 (2009) 359-376. | MR 2470934 | Zbl 1173.82010
, and .[9] Existence of random gradient states. Ann. Appl. Probab. 22 (2012) 1650-1692. | MR 2985173 | Zbl 1254.60095
and .[10] Uniqueness of random gradient states. Unpublished manuscript.
and .[11] On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to interface model. Probab. Theory Related Fields 133 (2005) 358-390. | MR 2198017 | Zbl 1083.60082
and .[12] Algebraic decay of attractive critical processes on the lattice. Ann. Probab. 22 (1994) 264-283. | MR 1258877 | Zbl 0811.60089
.[13] The random walk representation for interacting diffusion processes. In Interacting Stochastic Systems 377-393. Springer, Berlin, 2005. | MR 2118583 | Zbl 1111.82049
.[14] Large deviations and concentration properties for interface models. Probab. Theory Related Fields 117 (2000) 49-111. | MR 1759509 | Zbl 0988.82018
, and .[15] On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Comm. Math. Phys. 81 (1981) 277-298. | MR 632763
and .[16] Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50 (1976) 79-95. | MR 421531
, and .[17] The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Comm. Math. Phys. 81 (1981) 527-602. | MR 634447
and .[18] On the statistical mechanics of Coulomb and dipole gases. J. Stat. Phys. 24 (1981) 617-701. | MR 610687
and .[19] Motion by mean curvature from the Ginzburg-Landau interface model. Comm. Math. Phys. 185 (1997) 1-36. | MR 1463032 | Zbl 0884.58098
and .[20] Stochastic interface models. In Lectures on Probability Theory and Statistics 102-274. Lect. Notes in Math. 1869. Springer, Berlin, 2005. | MR 2228384 | Zbl 1119.60081
.[21] Gibbs Measures and Phase Transitions. De Gruyer, Berlin, 1988. | MR 956646 | Zbl 1225.60001
.[22] Equilibrium fluctuations for interface model. Ann. Probab. 29 (2001) 1138-1172. | MR 1872740 | Zbl 1017.60100
, and .[23] On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1994) 349-409. | MR 1257821 | Zbl 0946.35508
and .[24] Rosenthal's inequality for LPQD sequences. Statist. Probab. Lett. 42 (1999) 139-144. | MR 1680098 | Zbl 0931.60007
.[25] On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183 (1997) 55-84. | MR 1461951 | Zbl 0871.35010
and .[26] Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications. Asterisque 304. SMF, Paris, 2005. | MR 2251117 | Zbl 1104.60002
.[27] Localization and delocalization of random interfaces. Probab. Surv. 3 (2006) 112-169. | MR 2216964 | Zbl 1189.82051
.