On considère un système d'équations differentielles linéaires couplées conservant une certaine énergie et l'on perturbe ce système par une dynamique de type Glauber dont l'intensité varie aléatoirement site par site. Nous prouvons les limites hydrodyanmiques pour ce système non réversible en milieu aléatoire. Le coefficient de diffusion dépend de l'aléa uniquement par sa loi. Nous étudions aussi le coefficient de diffusion défini par la formule de Green-Kubo et montrons la convergence de celle-ci vers un coefficient de diffusion homogénéisé.
We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in random media. The diffusion coefficient turns out to depend on the random field only by its statistics. The diffusion coefficient defined through the Green-Kubo formula is also studied and its convergence to some homogenized diffusion coefficient is proved.
@article{AIHPB_2012__48_3_792_0, author = {Bernardin, C\'edric}, title = {Homogenization results for a linear dynamics in random Glauber type environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {48}, year = {2012}, pages = {792-818}, doi = {10.1214/11-AIHP424}, mrnumber = {2976564}, zbl = {1279.60123}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2012__48_3_792_0} }
Bernardin, Cédric. Homogenization results for a linear dynamics in random Glauber type environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) pp. 792-818. doi : 10.1214/11-AIHP424. http://gdmltest.u-ga.fr/item/AIHPB_2012__48_3_792_0/
[1] Hydrodynamics for a system of harmonic oscillators perturbed by a conservative noise. Stochastic Process. Appl. 117 (2007) 487-513. | MR 2305383 | Zbl 1112.60075
.[2] Thermal conductivity for a noisy disordered harmonic chain. J. Stat. Phys. 133 (2008) 417-433. | MR 2448630 | Zbl 1161.82021
.[3] Non-equilibrium macroscopic dynamics of chains of anharmonic oscillators
and .[4] Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs. J. Stat. Phys. 134 (2009) 1097-1119. | MR 2518984 | Zbl 1173.82017
, , and .[5] Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge, 1992. | MR 1207136 | Zbl 0761.60052
and .[6] Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields 13 (2007) 519-542. | MR 2357386 | Zbl 1144.60058
.[7] Random walks and exclusion processes among random conductances on random infinite clusters: Homogenization and hydrodynamic limit. Electron. J. Probab. 13 (2008) 2217-2247. | MR 2469609 | Zbl 1189.60172
.[8] Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields 127 (2003) 535-608. | MR 2021195 | Zbl 1052.60083
and .[9] Hydrodynamic behavior of 1D subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields 144 (2009) 633-667. | MR 2496445 | Zbl 1169.60326
, and .[10] Hydrodynamics in a symmetric random medium. Comm. Math. Phys. 125 (1989) 13-25. | MR 1017736 | Zbl 0682.76001
.[11] Stationary states of random Hamiltonian systems. Probab. Theory Related Fields 99 (1994) 211-236. | MR 1278883 | Zbl 0801.60093
, and .[12] Scaling limits for gradient systems in random environment. J. Stat. Phys. 131 (2008) 691-716. | MR 2398949 | Zbl 1144.82043
and .[13] Characterization of Brownian motion on manifolds through integration by parts. In Stein's Method and Applications 195-208. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5. Singapore Univ. Press, Singapore, 2005. | MR 2205337
.[14] Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 341-361. | Numdam | MR 2446327 | Zbl 1195.60124
and .[15] Scaling Limits of Interacting Particle Systems. Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002
and .[16] Symmetric random walk in random environment in one dimension. Period. Math. Hungar. 45 (2002) 101-120. | MR 1955197 | Zbl 1064.60202
.[17] Central limit theorems for tagged particles and for diffusions in random environment. In Milieux Aléatoires 75-100. Panor. Synthèses 12. Soc. Math. France, Paris, 2001. | MR 2226846 | Zbl 1119.60302
.[18] Hydrodynamic limit for a Hamiltonian system with weak noise. Comm. Math. Phys. 155 (1993) 523-560. | MR 1231642 | Zbl 0781.60101
, and .[19] Diffusion in disordered media. In Nonlinear Stochastic PDEs (Minneapolis, MN, 1994) 65-79. IMA Vol. Math. Appl. 77. Springer, New York, 1996. | MR 1395893 | Zbl 0840.60093
.[20] Bulk diffusion in a system with site disorder. Ann. Probab. 34 (2006) 1990-2036. | MR 2271489 | Zbl 1104.60066
.[21] Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edition. Academic Press, New York, 1980. | MR 751959 | Zbl 0459.46001
and .[22] Nonlinear diffusion limit for a system with nearest neighbor interactions. II. In Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Sanda/Kyoto, 1990) 75-128. Pitman Res. Notes Math. Ser. 283. Longman Sci. Tech., Harlow, 1993. | MR 1354152 | Zbl 0793.60105
.