Nous présentons une méthode de renormalisation pour construire certains modèles de potentiels aléatoires dans un nuage Poissonnien qui sont physiquement plus réalistes. Nous obtenons le mouvement brownien dans un potentiel aléatoire renormalisé et les modèles d'Anderson paraboliques associés. Par exemple, avec cette renormalisation, nous pouvons construire rigoureusement des modèles consistants avec la loi de la gravitation de Newton.
A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton's law of universal attraction can be rigorously constructed.
@article{AIHPB_2012__48_3_631_0, author = {Chen, Xia and Kulik, Alexey M.}, title = {Brownian motion and parabolic Anderson model in a renormalized Poisson potential}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {48}, year = {2012}, pages = {631-660}, doi = {10.1214/11-AIHP419}, mrnumber = {2976557}, zbl = {1279.60106}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2012__48_3_631_0} }
Chen, Xia; Kulik, Alexey M. Brownian motion and parabolic Anderson model in a renormalized Poisson potential. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) pp. 631-660. doi : 10.1214/11-AIHP419. http://gdmltest.u-ga.fr/item/AIHPB_2012__48_3_631_0/
[1] Large deviations for Riesz potentials of additive processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 626-666. | Numdam | MR 2548497 | Zbl 1181.60035
, and .[2] Superdiffusivity for a Brownian polymer in a continuous Gaussian environment. Ann. Probab. 36 (2008) 1642-1675. | MR 2440919 | Zbl 1149.82032
, and .[3] Screening effect due to heavy lower tails in one-dimensional parabolic Anderson model. J. Statist. Phys. 102 (2001) 1253-1270. | MR 1830447 | Zbl 1174.82333
and .[4] Probability Theory: An Advanced Course. Springer, New York, 1995. | MR 1367959 | Zbl 0838.60001
.[5] Parabolic Anderson Problem and Intermittency. Amer. Math. Soc., Providence, RI, 1994. | MR 1185878 | Zbl 0925.35074
and .[6] Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stochastics 62 (1998) 251-273. | MR 1615092 | Zbl 0908.60062
and .[7] Random Walk Intersections: Large Deviations and Related Topics. Math. Surv. Mono. 157. Amer. Math. Soc., Providence, RI, 2009. | MR 2584458 | Zbl 1192.60002
.[8] Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related Anderson models. Ann. Probab. 40 (2012) 1436-1482. | MR 2978130 | Zbl 1259.60094
.[9] Asymptotics of negative exponential moments for annealed Brownian motion in a renormalized Poisson potential. Preprint, 2011. | MR 2812672 | Zbl 1229.82096
and .[10] Spatial Brownian motion in renormalized Poisson potential: A critical case. Preprint, 2011.
and .[11] On large deviations for the parabolic Anderson model. Probab. Theory Related Fields 147 (2010) 349-378. | MR 2594357 | Zbl 1202.60040
, and .[12] Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 1150-1164. | Numdam | MR 2572169 | Zbl 1196.60116
and .[13] Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Probab. 11 (1983) 78-101. | MR 682802 | Zbl 0504.60033
.[14] Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975) 525-565. | MR 397901 | Zbl 0333.60077
and .[15] Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space. Probab. Theory Related Fields 135 (2006) 603-644. | Zbl 1105.60042
and .[16] Second order asymptotics for Brownian motion among a heavy tailed Poissonian potential. Preprint, 2010. | Zbl 1251.60075
.[17] Intermittency on catalysts: Symmetric exclusion. Electron. J. Probab. 12 (2007) 516-573. | Zbl 1129.60061
, and .[18] Moment asymptotics for the continuous parabolic Anderson model. Ann. Appl. Probab. 10 (2000) 192-217. | Zbl 1171.60359
and .[19] Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields 118 (2000) 547-573. | Zbl 0972.60056
, and .[20] Parabolic problem for the Anderson model. Comm. Math. Phys. 132 (1990) 613-655. | Zbl 0711.60055
and .[21] Localization for Schrödinger operators with Poisson random potential. J. Europ. Math. Soc. 9 (2007) 577-607. | MR 2314108 | Zbl 1214.82053
, and .[22] Diffusion in disordered media. Adv. in Phys. 36 (1987) 695-798.
and .[23] Brownian motion in a Poisson obstacle field. Séminaire Bourbaki 1998/99 (2000) 91-111. | Numdam | MR 1772671 | Zbl 0964.60091
.[24] Continuity and boundedness of infinitely divisible process: A Poisson point process approach. J. Theoret. Probab. 18 (2005) 109-160. | MR 2132274 | Zbl 1071.60025
and .[25] The behavior of certain Wiener integrals as and the density of states of Schrödinger equations with random potential. Teoret. Mat. Fiz. 32 (1977) 88-95. | MR 449356 | Zbl 0353.60053
.[26] Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983. | MR 710486 | Zbl 0516.47023
.[27] Confinement of Brownian motion among Poissonian obstacles in , . Probab. Theory Related Fields 114 (1999) 177-205. | MR 1701519 | Zbl 0943.60082
.[28] Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 (1989) 451-487. | MR 1001524 | Zbl 0659.60078
and .[29] On path properties of certain infinitely divisible process. Stochastic Process. Appl. 33 (1989) 73-87. | MR 1027109 | Zbl 0715.60051
.[30] Non-monotonic random Schrödinger operators: The Anderson model. J. Math. Anal. Appl. 248 (2000) 173-183. | MR 1772589 | Zbl 0974.47034
.[31] Brownian Motion, Obstacles and Random Media. Springer, Berlin, 1998. | MR 1717054 | Zbl 0973.60003
.[32] Brownian survival among Poissonian traps with random shapes at critical intensity. Probab. Theory Related Fields 132 (2005) 163-202. | MR 2199290 | Zbl 1072.60067
, and .