Hydrodynamic limit of a d-dimensional exclusion process with conductances
Valentim, Fábio Júlio
Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012), p. 188-211 / Harvested from Numdam

Étant donné un polynôme Φ de la forme Φ(α) = α + ∑2≤jmajαk=1j respectant Φ'(1) > 0, nous démontrons que l’évolution, sur une échelle diffusive, de la densité empirique des processus d’exclusion sur 𝕋 d , dont les conductances sont données par une classe spéciale de fonctions W, est décrite par l'unique solution faible de l'équation aux dérivées partielles parabolique : tρ=∑dxkWkΦ(ρ). Nous dérivons également certaines propriétés de l'opérateur ∑k=1dxkWk.

Fix a polynomial Φ of the form Φ(α) = α + ∑2≤jmajαk=1j with Φ'(1) > 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functions W, is described by the unique weak solution of the non-linear parabolic partial differential equation tρ = ∑dxkWkΦ(ρ). We also derive some properties of the operator ∑k=1dxkWk.

Publié le : 2012-01-01
DOI : https://doi.org/10.1214/10-AIHP397
Classification:  60K35,  26A24,  35K55
@article{AIHPB_2012__48_1_188_0,
     author = {Valentim, F\'abio J\'ulio},
     title = {Hydrodynamic limit of a $d$-dimensional exclusion process with conductances},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {48},
     year = {2012},
     pages = {188-211},
     doi = {10.1214/10-AIHP397},
     zbl = {1254.60093},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2012__48_1_188_0}
}
Valentim, Fábio Júlio. Hydrodynamic limit of a $d$-dimensional exclusion process with conductances. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) pp. 188-211. doi : 10.1214/10-AIHP397. http://gdmltest.u-ga.fr/item/AIHPB_2012__48_1_188_0/

[1] E. B. Dynkin. Markov Processes, Vol. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 122. Springer, Berlin, 1965. | Zbl 0132.37901

[2] A. Faggionato. Random walks and exclusion processs among random conductances on random infinite clusters: Homogenization and hydrodynamic limit. Electron. J. Probab. 13 (2008) 2217-2247. Available at arXiv:0704.3020v3. | MR 2469609 | Zbl 1189.60172

[3] A. Faggionato, M. Jara and C. Landim. Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields 144 (2009) 633-667. Available at arXiv:0709.0306. | MR 2496445 | Zbl 1169.60326

[4] W. Feller. On second order differential operators. Ann. Math. (2) 61 (1955) 90-105. | MR 68082 | Zbl 0064.11301

[5] W. Feller. Generalized second order differential operators and their lateral conditions. Illinois J. Math. 1 (1957) 459-504. | MR 92046 | Zbl 0077.29102

[6] T. Franco and C. Landim. Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal. 195 (2010) 409-439. | MR 2592282 | Zbl 1192.82062

[7] M. Jara and C. Landim. Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 341-361. Available at arXiv:math/0603653. | Numdam | MR 2446327 | Zbl 1195.60124

[8] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002

[9] P. Mandl. Analytical Treatment of One-Dimensional Markov Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 151. Springer, Berlin, 1968. | MR 247667 | Zbl 0179.47802

[10] A. B. Simas and F. J. Valentim. W-Sobolev spaces: Theory, homogenization and applications. Preprint, 2009. Available at arXiv:0911.4177. | MR 2805508 | Zbl 1221.35017