Nous démontrons des bornes sur les fluctuations du courant de particules pour des processus de zero-range unidimensionnels totalement asymétriques avec des taux de sauts concaves dont la pente décroît exponentiellement. Les fluctuations dans la direction des caractéristiques sont de l'ordre t1/3 en accord avec les prédictions de la classe d'universalité de KPZ. Notre résultat est obtenu par un raisonnement robuste qui est formulé pour une classe importante de processus de déposition. Au-delà du processus de zero-range, les hypothèses de notre argument ont aussi été vérifiées dans des articles antérieurs pour le processus d'exclusion simple asymétrique et le processus de zero-range avec taux constants. Ces hypothèses sont en cours de développement pour un processus de déposition avec des taux de sauts dont la croissance est exponentielle.
We prove fluctuation bounds for the particle current in totally asymmetric zero range processes in one dimension with nondecreasing, concave jump rates whose slope decays exponentially. Fluctuations in the characteristic directions have order of magnitude t1/3. This is in agreement with the expectation that these systems lie in the same KPZ universality class as the asymmetric simple exclusion process. The result is via a robust argument formulated for a broad class of deposition-type processes. Besides this class of zero range processes, hypotheses of this argument have also been verified in the authors' earlier papers for the asymmetric simple exclusion and the constant rate zero range processes, and are currently under development for a bricklayers process with exponentially increasing jump rates.
@article{AIHPB_2012__48_1_151_0, author = {Bal\'azs, M\'arton and Komj\'athy, J\'ulia and Sepp\"al\"ainen, Timo}, title = {Microscopic concavity and fluctuation bounds in a class of deposition processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {48}, year = {2012}, pages = {151-187}, doi = {10.1214/11-AIHP415}, mrnumber = {2919202}, zbl = {1247.82039}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2012__48_1_151_0} }
Balázs, Márton; Komjáthy, Júlia; Seppäläinen, Timo. Microscopic concavity and fluctuation bounds in a class of deposition processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) pp. 151-187. doi : 10.1214/11-AIHP415. http://gdmltest.u-ga.fr/item/AIHPB_2012__48_1_151_0/
[1] Invariant measures for the zero range processes. Ann. Probab. 10 (1982) 525-547. | MR 659526 | Zbl 0492.60096
.[2] Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab. 34 (2006) 1339-1369. | MR 2257649 | Zbl 1101.60075
, , and .[3] On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999) 1119-1178. | MR 1682248 | Zbl 0932.05001
, and .[4] Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100 (2000) 523-541. | MR 1788477 | Zbl 0976.82043
and .[5] Growth fluctuations in a class of deposition models. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 639-685. | Numdam | MR 1983174 | Zbl 1029.60075
.[6] Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab. 11 (2006) 1094-1132 (electronic). | MR 2268539 | Zbl 1139.60046
, and .[7] Order of current variance and diffusivity in the rate one totally asymmetric zero range process. J. Stat. Phys. 133 (2008) 59-78. | MR 2438897 | Zbl 1151.82381
and .[8] The random average process and random walk in a space-time random environment in one dimension. Comm. Math. Phys. 266 (2006) 499-545. | MR 2238887 | Zbl 1129.60097
, and .[9] Existence of the zero range process and a deposition model with superlinear growth rates. Ann. Probab. 35 (2007) 1201-1249. | MR 2330972 | Zbl 1138.60340
, , and .[10] A convexity property of expectations under exponential weights. Available at http://arxiv.org/abs/0707.4273, 2007.
and .[11] Exact connections between current fluctuations and the second class particle in a class of deposition models. J. Stat. Phys. 127 (2007) 431-455. | MR 2314355 | Zbl 1147.82348
and .[12] Fluctuation bounds for the asymmetric simple exclusion process. ALEA Lat. Am. J. Probab. Math. Stat. VI (2009) 1-24. | MR 2485877 | Zbl 1160.60333
and .[13] Order of current variance and diffusivity in the asymmetric simple exclusion process. Ann. of Math. 171 (2010) 1237-1265. | MR 2630064 | Zbl 1200.60083
and .[14] Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055-1080. | MR 2363389 | Zbl 1136.82028
, , and .[15] Second class particles and cube root asymptotics for Hammersley's process. Ann. Probab. 34 (2006) 1273-1295. | MR 2257647 | Zbl 1101.60076
and .[16] Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70 (1985) 509-523. | MR 807334 | Zbl 0554.60097
.[17] Asymptotics of particle trajectories in infinite one-dimensional systems with collisions. Comm. Pure Appl. Math. 38 (1985) 573-597. | MR 803248 | Zbl 0578.60094
, and .[18] Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22 (1994) 820-832. | MR 1288133 | Zbl 0806.60099
and .[19] Fluctuations of a surface submitted to a random average process. Electron. J. Probab. 3 (1998) pp. 34 (electronic). | MR 1624854 | Zbl 0903.60089
and .[20] Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys. 265 (2006) 1-44. | MR 2217295 | Zbl 1118.82032
and .[21] Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102 (2001) 1085-1132. | MR 1830441 | Zbl 0989.82030
, and .[22] Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. | MR 1737991 | Zbl 0969.15008
.[23] Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003) 277-329. | MR 2018275 | Zbl 1031.60084
.[24] Total Positivity. Vol. I. Stanford University Press, Stanford, CA, 1968. | MR 230102 | Zbl 0219.47030
.[25] Space-time current process for independent random walks in one dimension. ALEA Lat. Am. J. Probab. Math. Stat. IV (2008) 307-336. | MR 2456971 | Zbl 1162.60345
.[26] An infinite particle system with zero range interactions. Ann. Probab. 1 (1973) 240-253. | MR 381039 | Zbl 0264.60083
.[27] Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer-Verlag, New York, 1985. | MR 776231 | Zbl 0559.60078
.[28] Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108 (2002) 1071-1106. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. | MR 1933446 | Zbl 1025.82010
and .[29] J. Quastel and B. Valkó. t1/3 Superdiffusivity of finite-range asymmetric exclusion processes on ℤ. Comm. Math. Phys. 273 (2007) 379-394. | MR 2318311 | Zbl 1127.60091
[30] A note on the diffusivity of finite-range asymmetric exclusion processes on ℤ. In In and Out Equilibrium 2 543-550. V. Sidoravicius and M. E. Vares (Eds). Progress in Probability 60. Birkhäuser, Basel, 2008. | MR 2477398 | Zbl 1173.82341
and .[31] Hydrodynamic limit for attractive particle systems on Zd. Comm. Math. Phys. 140 (1991) 417-448. | MR 1130693 | Zbl 0738.60098
.[32] Second-order fluctuations and current across characteristic for a one-dimensional growth model of independent random walks. Ann. Probab. 33 (2005) 759-797. | MR 2123209 | Zbl 1108.60083
.[33] Interaction of Markov processes. Advances in Math. 5 (1970) 246-290. | MR 268959 | Zbl 0312.60060
.[34] Total current fluctuations in the asymmetric simple exclusion process. J. Math. Phys. 50 095204, 2009. | MR 2566884 | Zbl 1241.82051
and .