Testing stationary processes for independence
Morvai, Gusztáv ; Weiss, Benjamin
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011), p. 1219-1225 / Harvested from Numdam

Soit H0 la classe de tous les processus indépendants et équidistribués à valeurs réelles, et H1 la classe complémentaire dans l'ensemble des processus ergodiques. Nous donnons un test séquentiel fortement consistant pour les distinguer.

Let H0 denote the class of all real valued i.i.d. processes and H1 all other ergodic real valued stationary processes. In spite of the fact that these classes are not countably tight we give a strongly consistent sequential test for distinguishing between them.

Publié le : 2011-01-01
DOI : https://doi.org/10.1214/11-AIHP426
Classification:  62M07
@article{AIHPB_2011__47_4_1219_0,
     author = {Morvai, Guszt\'av and Weiss, Benjamin},
     title = {Testing stationary processes for independence},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {47},
     year = {2011},
     pages = {1219-1225},
     doi = {10.1214/11-AIHP426},
     zbl = {1271.62196},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_4_1219_0}
}
Morvai, Gusztáv; Weiss, Benjamin. Testing stationary processes for independence. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 1219-1225. doi : 10.1214/11-AIHP426. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_4_1219_0/

[1] D. H. Bailey. Sequential schemes for classifying and predicting ergodic processes. Ph.D. thesis, Stanford Univ., 1976. | MR 2626644

[2] A. Berger. On uniformly consistent tests. Ann. Math. Statist. 22 (1951) 289-293. | MR 42653 | Zbl 0042.38003

[3] A. Dembo and Y. Peres. A topological criterion for hypothesis testing. Ann. Statist. 22 (1994) 106-117. | MR 1272078 | Zbl 0818.62010

[4] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR 144363 | Zbl 0127.10602

[5] W. Hoeffding and J. Wolfowitz. Distinguishability of sets of distributions. Ann. Math. Statist. 29 (1958) 700-718. | MR 95555 | Zbl 0135.19404

[6] Ch. Kraft. Some conditions for consistency and uniform consistency of statistical procedures. Univ. California Publ. Statist. 2 (1955) 125-141. | MR 73896 | Zbl 0066.12202

[7] G. Morvai and B. Weiss. Order estimation of Markov chains. IEEE Trans. Inform. Theory 51 (2005) 1496-1497. | MR 2241507

[8] G. Morvai and B. Weiss. On classifying processes. Bernoulli 11 (2005) 523-532. | MR 2146893 | Zbl 1073.62077

[9] G. Morvai and B. Weiss. Estimating the lengths of memory words. IEEE Transactions on Information Theory 54 (2008) 3804-3807. | MR 2451043

[10] A. Nobel. Hypothesis testing for families of ergodic processes. Bernoulli 12 (2006) 251-269. | MR 2218555 | Zbl 1099.62097

[11] D. Ornstein and B. Weiss. How sampling reveals a process. Ann. Probab. 18 (1990) 905-930. | MR 1062052 | Zbl 0709.60036

[12] B. Weiss. Some remarks on filtering and prediction of stationary processes. Israel J. Math. 149 (2005) 345-360. | MR 2191220 | Zbl 1085.60024