Nous développons la théorie des champs aléatoires invariants dans les fibrés vectoriels. Nous obtenons la décomposition spectrale d'un champ aléatoire invariant dans un fibré vectoriel homogène engendré par une représentation induite par un groupe de Lie compact et connexe. Nous discutons une application à la théorie du rayonnement fossile, où G = SO(3). Un théorème sur l'équivalence de deux groupes d'hypothèses cosmologiques est aussi démontré.
We develop the theory of invariant random fields in vector bundles. The spectral decomposition of an invariant random field in a homogeneous vector bundle generated by an induced representation of a compact connected Lie group G is obtained. We discuss an application to the theory of relic radiation, where G = SO(3). A theorem about equivalence of two different groups of assumptions in cosmological theories is proved.
@article{AIHPB_2011__47_4_1068_0, author = {Malyarenko, Anatoliy}, title = {Invariant random fields in vector bundles and application to cosmology}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {1068-1095}, doi = {10.1214/10-AIHP409}, zbl = {1268.60072}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_4_1068_0} }
Malyarenko, Anatoliy. Invariant random fields in vector bundles and application to cosmology. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 1068-1095. doi : 10.1214/10-AIHP409. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_4_1068_0/
[1] On the characterization of isotropic Gaussian fields on homogeneous spaces of compact groups. Electron. Comm. Probab. 12 (2007) 291-302. | MR 2342708 | Zbl 1128.60039
, and .[2] Theory of Group Representations and Applications, 2nd edition. World Scientific, Singapore, 1986. | MR 889252 | Zbl 0471.22021
and .[3] Theory of cosmic microwave background polarization, 2005. Available at arXiv:astro-ph/0403392v2.
and .[4] The Helgason Fourier transform for homogeneous vector bundles over compact Riemannian symmetric spaces - The local theory. J. Funct. Anal. 220 (2005) 97-117. | MR 2114700 | Zbl 1060.43004
.[5] Anisotropies in the cosmic microwave background, 2004. Available at arXiv:astro-ph/0403344v1.
.[6] Cosmic microwave background polarisation analysis. In Data Analysis in Cosmology 121-158. V. J. Martinez, E. Saar, E. Martínez-González and M.-J. Pons-Borderia (Eds). Lecture Notes in Phys. 665. Springer, Berlin, 2009. | Zbl 1179.85027
.[7] Lecture notes on the physics of cosmic microwave background anisotropies. In Cosmology and Gravitation: XIII Brazilian School on Cosmology and Gravitation (XIII BSCG), Rio de Janeiro (Brazil), 20 July-2 August 2008 86-140. M. Novello and S. Perez (Eds). AIP Conf. Proc. 1132. American Institute of Physics, Melville, NY, 2008.
and .[8] The Cosmic Microwave Background. Cambridge Univ. Press, Cambridge, 2008.
.[9] Representations of the group of rotations in three-dimensional space and their applications. Uspehi Mat. Nauk 7 (1952) 3-117 (in Russian). | MR 47664 | Zbl 0070.25902
and .[10] Spin needlets spectral estimation. Electron. J. Stat. 3 (2009) 1497-1530. | MR 2578835
, and .[11] Spin wavelets on the sphere. J. Fourier Anal. Appl. 16 (2010) 840-884. | MR 2737761 | Zbl 1206.42039
and .[12] Bayesian analysis of cosmic microwave background data. In Bayesian Methods in Cosmology 229-244. M. P. Hobson, A. H. Jaffe, A. R. Liddle, P. Mukherjee and D. Parkinson (Eds). Cambridge Univ. Press, Cambridge, 2009.
.[13] Statistics of cosmic microwave background polarization. Phys. Rev. D 55 (1997) 7368-7388.
, and .[14] On spectral representations of tensor random fields on the sphere, 2009. Available at arXiv:0912.3389v1.
and .[15] A beginner's guide to the theory of CMB temperature and polarization power spectra in the line-of-sight formalism. Astroparticle Physics 25 (2006) 151-166.
and .[16] High-frequency asymptotics for subordinated stationary fields on an Abelian compact group. Stochastic Process. Appl. 118 (2008) 585-613. | MR 2394764 | Zbl 1143.60007
and .[17] Group representations and high-resolution central limit theorems for subordinated spherical random fields. Bernoulli 16 (2010) 798-824. | MR 2730649 | Zbl pre05945286
and .[18] Representations of SO(3) and angular polyspectra. J. Multivariate Anal. 101 (2010) 77-100. | MR 2557620 | Zbl 1216.60027
and .[19] Theory of Group Representations. Springer, New York, 1982. | MR 793377 | Zbl 0484.22018
and .[20] Note on the Bondi-Metzner-Sachs group. J. Math. Phys. 7 (1966) 863-870. | MR 194172
and .[21] Statistically homogeneous random fields on a sphere. Uspehi Mat. Nauk 2 (1947) 196-198.
.[22] Spectral theory of n-dimensional stationary stochastic processes with discrete time. Uspehi Mat. Nauk 13 (1958) 93-142 (in Russian). | MR 114252 | Zbl 0080.34904
.[23] Multipole expansions of gravitational radiation. Rev. Modern Phys. 52 (1980) 299-339. | MR 569166
.[24] Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs 22. American Mathematical Society, Providence, RI, 1968. | MR 229863 | Zbl 0172.18404
.[25] Cosmology. Oxford Univ. Press, Oxford, 2008. | MR 2410479 | Zbl 1147.83002
.[26] Second-order homogeneous random fields. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II 593-622. Univ. California Press, Berkeley, CA, 1961. | MR 146880 | Zbl 0123.35001
.[27] An all-sky analysis of polarisation in the microwave background. Phys. Rev. D 55 (1997) 1830-1840.
and .