Strong solutions for stochastic differential equations with jumps
Li, Zenghu ; Mytnik, Leonid
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011), p. 1055-1067 / Harvested from Numdam

Nous étudions des équations stochastiques générales avec sauts et proposons un critère qui garantit l'existence et l'unicité de solutions fortes sous des conditions de régularité de type Yamada-Watanabe. Les résultats sont appliqués à des équations stochastiques conduites par des processus de Lévy de sauts positifs.

General stochastic equations with jumps are studied. We provide criteria for the uniqueness and existence of strong solutions under non-Lipschitz conditions of Yamada-Watanabe type. The results are applied to stochastic equations driven by spectrally positive Lévy processes.

Publié le : 2011-01-01
DOI : https://doi.org/10.1214/10-AIHP389
Classification:  60H10,  60H20,  60J80
@article{AIHPB_2011__47_4_1055_0,
     author = {Li, Zenghu and Mytnik, Leonid},
     title = {Strong solutions for stochastic differential equations with jumps},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {47},
     year = {2011},
     pages = {1055-1067},
     doi = {10.1214/10-AIHP389},
     zbl = {1273.60070},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_4_1055_0}
}
Li, Zenghu; Mytnik, Leonid. Strong solutions for stochastic differential equations with jumps. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 1055-1067. doi : 10.1214/10-AIHP389. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_4_1055_0/

[1] M. T. Barlow. One-dimensional stochastic differential equations with no strong solution. J. London Math. Soc. (2) 26 (1982) 335-347. | MR 675177 | Zbl 0456.60062

[2] R. F. Bass. Stochastic differential equations driven by symmetric stable processes. In Séminaire de Probabilités, XXXVI. Lecture Notes in Math. 1801 302-313. Springer, Berlin, 2003. | Numdam | MR 1971592 | Zbl 1039.60056

[3] R. F. Bass, K. Burdzy and Z.-Q. Chen. Stochastic differential equations driven by stable processes for which pathwise uniqueness fails. Stochastic Process. Appl. 111 (2004) 1-15. | MR 2049566 | Zbl 1111.60038

[4] Z. F. Fu and Z. H. Li. Stochastic equations of non-negative processes with jumps. Stochastic Process. Appl. 120 (2010) 306-330. | MR 2584896 | Zbl 1184.60022

[5] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland and Kodasha, Amsterdam and Tokyo, 1989. | MR 1011252 | Zbl 0495.60005

[6] T. Komatsu. On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982) 353-356. | MR 683262 | Zbl 0511.60057

[7] R. Situ. Theory of Stochastic Differential Equations with Jumps and Applications. Springer, Berlin, 2005. | MR 2160585 | Zbl 1070.60002

[8] T. Yamada and S. Watanabe. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971) 155-167. | MR 278420 | Zbl 0236.60037