Au moyen d'une méthode d'ondelettes nous montrons que le mouvement Brownien multifractionnaire de type harmonisable à N indices (mfBm) est un champ gaussien localement non-déterministe. Grâce à cette propriété nous établissons ensuite la bicontinuité des temps locaux d'un (N, d)-mfBm et cela nous permet d'obtenir de nouveaux résultats concernant son comportement trajectoriel.
By using a wavelet method we prove that the harmonisable-type N-parameter multifractional brownian motion (mfBm) is a locally nondeterministic gaussian random field. This nice property then allows us to establish joint continuity of the local times of an (N, d)-mfBm and to obtain some new results concerning its sample path behavior.
@article{AIHPB_2011__47_4_1029_0, author = {Ayache, Antoine and Shieh, Narn-Rueih and Xiao, Yimin}, title = {Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {1029-1054}, doi = {10.1214/10-AIHP408}, zbl = {1268.60048}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_4_1029_0} }
Ayache, Antoine; Shieh, Narn-Rueih; Xiao, Yimin. Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 1029-1054. doi : 10.1214/10-AIHP408. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_4_1029_0/
[1] The Geometry of Random Fields. Wiley, New York, 1981. | MR 611857 | Zbl 0478.60059
.[2] Hausdorff dimension of the graph of fractional Brownian sheet. Rev. Mat. Iberoamericana 20 (2004) 395-412. | MR 2073125 | Zbl 1057.60033
.[3] The covariance structure of multifractional Brownian motion, with application to long range dependence. In Proceeding of ICASSP, Istambul, 2002.
, and .[4] Wavelet construction of Generalized Multifractional Processes. Rev. Mat. Iberoamericana 23 (2007) 327-370. | MR 2351137 | Zbl 1123.60022
, and .[5] Fractional and multifractional Brownian sheet. Preprint, 2000. | Zbl 1006.60029
and .[6] Multifractional processes with random exponent. Publ. Mat. 49 (2005) 459-486. | MR 2177638 | Zbl 1082.60032
and .[7] Asymptotic growth properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | MR 2169474 | Zbl 1088.60033
and .[8] Hölder properties of local times for fractional Brownian motions. Metrika 69 (2009) 125-152. | MR 2481918
, and .[9] Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | MR 1462329 | Zbl 0880.60053
, and .[10] Gaussian sample function: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | MR 307320 | Zbl 0246.60038
.[11] Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69-94. | MR 317397 | Zbl 0264.60024
.[12] On the local time of multifractional Brownian motion. Stochastics 78 (2006) 33-49. | MR 2219711 | Zbl 1124.60061
, and .[13] Sample path properties of the local time of multifractional Brownian motion. Bernoulli 13 (2007) 849-867. | MR 2348754 | Zbl 1138.60032
, and .[14] Path properties of a class of locally asymptotically self similar processes. Electron. J. Probab. 13 (2008) 898-921. | MR 2413288 | Zbl 1191.60046
, and .[15] Local nondeterminism and the zeros of Gaussian processes. Ann. Probab. 6 (1978) 72-84. | MR 488252 | Zbl 0374.60051
.[16] Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Ser. in Appl. Math. 61. SIAM, Philadelphia, 1992. | MR 1162107 | Zbl 0776.42018
.[17] Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw. Gebiete 56 (1981) 195-228. | MR 618272 | Zbl 0471.60046
.[18] Occupation densities. Ann. Probab. 8 (1980) 1-67. | MR 556414 | Zbl 0499.60081
and .[19] From N parameter fractional Brownian motions to N parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 1249-1284. | MR 2274895 | Zbl 1135.60020
.[20] Some Random Series of Functions, 2nd edition. Cambridge Univ. Press, Cambridge, 1985. | MR 833073 | Zbl 0805.60007
.[21] Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. | MR 1914748 | Zbl 1005.60005
.[22] Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana 2 (1986) 1-18. | MR 864650 | Zbl 0657.42028
and .[23] Multifractional Brownian motion: Definition and preliminary results. Technical Report RR-2645, Institut National de Recherche en Informatique et Automatique, INRIA, Le Chesnay, France, 1995.
and .[24] Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields. Preprint, 2010. | MR 2885561
and .[25] Local times of multifractional Brownian sheets. Bernoulli 13 (2008) 865-898. | MR 2537815 | Zbl 1186.60036
, and .[26] Wavelets and Operators, Vol. 1. Cambridge Univ. Press, Cambridge, 1992. | MR 1228209 | Zbl 0776.42019
.[27] Local nondeterminism and Hausdorff dimension. In Seminar on Stochastic Processes 1986 163-189. E. Cinlar, K. L. Chung and R. K. Getoor (Eds). Prog. Probab. Statist. Birkhäuser, Boston, MA, 1987. | MR 902433 | Zbl 0616.60049
and .[28] Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309-330. | MR 471055 | Zbl 0382.60055
.[29] How rich is the class of multifractional Brownian motions? Stochastic Process. Appl. 116 (2006) 200-221. | MR 2197974 | Zbl 1094.60024
and .[30] Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129-157. | MR 1469923 | Zbl 0882.60035
.[31] Sample path properties of anisotropic Gaussian random fields. In A Minicourse on Stochastic Partial Differential Equations 145-212. D. Khoshnevisan and F. Rassoul-Agha (Eds). Springer, New York 2009. | MR 2508776 | Zbl 1167.60011
.