Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times
Ayache, Antoine ; Shieh, Narn-Rueih ; Xiao, Yimin
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011), p. 1029-1054 / Harvested from Numdam

Au moyen d'une méthode d'ondelettes nous montrons que le mouvement Brownien multifractionnaire de type harmonisable à N indices (mfBm) est un champ gaussien localement non-déterministe. Grâce à cette propriété nous établissons ensuite la bicontinuité des temps locaux d'un (N, d)-mfBm et cela nous permet d'obtenir de nouveaux résultats concernant son comportement trajectoriel.

By using a wavelet method we prove that the harmonisable-type N-parameter multifractional brownian motion (mfBm) is a locally nondeterministic gaussian random field. This nice property then allows us to establish joint continuity of the local times of an (N, d)-mfBm and to obtain some new results concerning its sample path behavior.

Publié le : 2011-01-01
DOI : https://doi.org/10.1214/10-AIHP408
Classification:  60G15,  60G17,  28A80
@article{AIHPB_2011__47_4_1029_0,
     author = {Ayache, Antoine and Shieh, Narn-Rueih and Xiao, Yimin},
     title = {Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {47},
     year = {2011},
     pages = {1029-1054},
     doi = {10.1214/10-AIHP408},
     zbl = {1268.60048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_4_1029_0}
}
Ayache, Antoine; Shieh, Narn-Rueih; Xiao, Yimin. Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 1029-1054. doi : 10.1214/10-AIHP408. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_4_1029_0/

[1] R. J. Adler. The Geometry of Random Fields. Wiley, New York, 1981. | MR 611857 | Zbl 0478.60059

[2] A. Ayache. Hausdorff dimension of the graph of fractional Brownian sheet. Rev. Mat. Iberoamericana 20 (2004) 395-412. | MR 2073125 | Zbl 1057.60033

[3] A. Ayache, S. Cohen and J. Lévy-Véhel. The covariance structure of multifractional Brownian motion, with application to long range dependence. In Proceeding of ICASSP, Istambul, 2002.

[4] A. Ayache, S. Jaffard and M. S. Taqqu. Wavelet construction of Generalized Multifractional Processes. Rev. Mat. Iberoamericana 23 (2007) 327-370. | MR 2351137 | Zbl 1123.60022

[5] A. Ayache and S. Léger. Fractional and multifractional Brownian sheet. Preprint, 2000. | Zbl 1006.60029

[6] A. Ayache and M. S. Taqqu. Multifractional processes with random exponent. Publ. Mat. 49 (2005) 459-486. | MR 2177638 | Zbl 1082.60032

[7] A. Ayache and Y. Xiao. Asymptotic growth properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | MR 2169474 | Zbl 1088.60033

[8] D. Baraka, T. Mountford and Y. Xiao. Hölder properties of local times for fractional Brownian motions. Metrika 69 (2009) 125-152. | MR 2481918

[9] A. Benassi, S. Jaffard and D. Roux. Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | MR 1462329 | Zbl 0880.60053

[10] S. M. Berman. Gaussian sample function: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | MR 307320 | Zbl 0246.60038

[11] S. M. Berman. Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69-94. | MR 317397 | Zbl 0264.60024

[12] B. Boufoussi, M. Dozzi and R. Guerbaz. On the local time of multifractional Brownian motion. Stochastics 78 (2006) 33-49. | MR 2219711 | Zbl 1124.60061

[13] B. Boufoussi, M. Dozzi and R. Guerbaz. Sample path properties of the local time of multifractional Brownian motion. Bernoulli 13 (2007) 849-867. | MR 2348754 | Zbl 1138.60032

[14] B. Boufoussi, M. Dozzi and R. Guerbaz. Path properties of a class of locally asymptotically self similar processes. Electron. J. Probab. 13 (2008) 898-921. | MR 2413288 | Zbl 1191.60046

[15] J. Cuzick. Local nondeterminism and the zeros of Gaussian processes. Ann. Probab. 6 (1978) 72-84. | MR 488252 | Zbl 0374.60051

[16] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Ser. in Appl. Math. 61. SIAM, Philadelphia, 1992. | MR 1162107 | Zbl 0776.42018

[17] W. Ehm. Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw. Gebiete 56 (1981) 195-228. | MR 618272 | Zbl 0471.60046

[18] D. Geman and J. Horowitz. Occupation densities. Ann. Probab. 8 (1980) 1-67. | MR 556414 | Zbl 0499.60081

[19] E. Herbin. From N parameter fractional Brownian motions to N parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 1249-1284. | MR 2274895 | Zbl 1135.60020

[20] J.-P. Kahane. Some Random Series of Functions, 2nd edition. Cambridge Univ. Press, Cambridge, 1985. | MR 833073 | Zbl 0805.60007

[21] D. Khoshnevisan. Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. | MR 1914748 | Zbl 1005.60005

[22] P. G. Lemarié and Y. Meyer. Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana 2 (1986) 1-18. | MR 864650 | Zbl 0657.42028

[23] J. Lévy-Véhel and R. F. Peltier. Multifractional Brownian motion: Definition and preliminary results. Technical Report RR-2645, Institut National de Recherche en Informatique et Automatique, INRIA, Le Chesnay, France, 1995.

[24] N. Luan and Y. Xiao. Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields. Preprint, 2010. | MR 2885561

[25] M. M. Meerschaert, D. Wu and Y. Xiao. Local times of multifractional Brownian sheets. Bernoulli 13 (2008) 865-898. | MR 2537815 | Zbl 1186.60036

[26] Y. Meyer. Wavelets and Operators, Vol. 1. Cambridge Univ. Press, Cambridge, 1992. | MR 1228209 | Zbl 0776.42019

[27] D. Monrad and L. D. Pitt. Local nondeterminism and Hausdorff dimension. In Seminar on Stochastic Processes 1986 163-189. E. Cinlar, K. L. Chung and R. K. Getoor (Eds). Prog. Probab. Statist. Birkhäuser, Boston, MA, 1987. | MR 902433 | Zbl 0616.60049

[28] L. D. Pitt. Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309-330. | MR 471055 | Zbl 0382.60055

[29] S. A. Stoev and M. S. Taqqu. How rich is the class of multifractional Brownian motions? Stochastic Process. Appl. 116 (2006) 200-221. | MR 2197974 | Zbl 1094.60024

[30] Y. Xiao. Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129-157. | MR 1469923 | Zbl 0882.60035

[31] Y. Xiao. Sample path properties of anisotropic Gaussian random fields. In A Minicourse on Stochastic Partial Differential Equations 145-212. D. Khoshnevisan and F. Rassoul-Agha (Eds). Springer, New York 2009. | MR 2508776 | Zbl 1167.60011